A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dentin bond strength and antimicrobial activities of universal adhesives containing silver nanoparticles synthesized with Rosa canina extract. | LitMetric

AI Article Synopsis

  • The study aimed to assess how biogenic silver nanoparticles (Ag NPs) made through green synthesis affect the bond strength of three universal adhesives and their ability to combat the bacteria Streptococcus mutans.
  • Three universal adhesives were used, and Ag NPs were added at a concentration of 0.05%. Various tests, including bond strength measurements and antibacterial tests, were conducted to evaluate the effectiveness of these nanoparticles.
  • Results showed that all adhesive groups containing Ag NPs exhibited significantly greater antibacterial properties than those without, suggesting the potential benefits of incorporating Ag NPs in dental adhesives.

Article Abstract

Objective: The purpose in the study was to evaluate the effect of biogenic silver nanoparticles (Ag NPs) synthesized by the green synthesis method on dentin bond strength in three different universal adhesives and investigate their antibiofilm activity against Streptococcus mutans (S. mutans).

Materials And Methods: Three different universal adhesives (single bond universal, all-bond universal, and clearfil universal) were used in this study. Ag NPs were synthesized using rose hip (Rosa canina) extract as a reducing and stabilizing agent and they were characterized with STEM, UV-vis spectrophotometer, DLS, and zeta potential. Ag NPs were added to the adhesive resins at a rate of 0.05% (w/w), and their homogeneous distribution in the adhesive was determined using EDX spectrometry. Samples in all groups were tested at baseline-after 5000 and 10,000 thermal cycles. Adhesive composite discs were used for the live/dead analysis of S. mutans, MTT metabolic activity test, lactic acid production, and determination of colony-forming unit (CFU) values (n = 3). Ninety extracted caries-free human third molars were used to determine microtensile bond strength (μTBS) (n = 10). After the universal adhesive was applied to the dentin surface, composite resin (Z550 XT, 3 M ESPE, USA) was placed and sections were taken to form a composite-dentin stick of 1 mm × 1 mm wideness and 8-mm length. The sticks were broken at a rate of 1 mm/min under uniaxial tension in a universal testing machine, and the failure modes were determined by SEM. One-way analysis of variance (ANOVA) for antibacterial tests and two-way analysis of variance for μTBS tests were performed (p < 0.05).

Results: All universal adhesive groups containing Ag NPs showed higher antibacterial activity than control groups without Ag NPs (p < 0.05). There was a statistically significant difference in the live/dead assay analysis, MTT metabolic activity test, lactic acid production, and CFU values in the thermal cycled Ag NPs groups (p < 0.05). Antibacterial activity decreased in groups containing Ag NPs subjected to 10,000 thermal cycles. The highest lactic acid production 11.06 (± 0.629) and CFUs 7.61 (± 0.304), live bacteria 31.13 (± 0.466), and S. mutans MTT metabolic activity 0.29 (± 0.376) at AU (All-Bond Universal-Ag NPs) 10,000 thermal cycles group. There was no difference in μTBS values between the initial and 5000 thermal cycle groups, there was a difference between the 10,000 thermal cycle groups. The CU (Clearfil Universal-Ag NPs) group subjected to 10,000 thermal cycles showed lower μTBS 11.1 (± 3.2).

Conclusion: In conclusion, universal adhesives containing biogenic Ag NPs showed higher antibacterial activity than the control groups and did not reduce the μTBS.

Clinical Relevance: Antibacterial universal adhesives can contribute to restoration success in clinical applications by reducing residual bacteria and preventing secondary caries formation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-023-05306-6DOI Listing

Publication Analysis

Top Keywords

bond strength
12
universal adhesives
12
dentin bond
8
universal
8
silver nanoparticles
8
rosa canina
8
canina extract
8
nps synthesized
8
three universal
8
analysis variance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!