Invasive plant pathogenic fungi have a global impact, with devastating economic and environmental effects on crops and forests. Biosurveillance, a critical component of threat mitigation, requires risk prediction based on fungal lifestyles and traits. Recent studies have revealed distinct genomic patterns associated with specific groups of plant pathogenic fungi. We sought to establish whether these phytopathogenic genomic patterns hold across diverse taxonomic and ecological groups from the Ascomycota and Basidiomycota, and furthermore, if those patterns can be used in a predictive capacity for biosurveillance. Using a supervised machine learning approach that integrates phylogenetic and genomic data, we analyzed 387 fungal genomes to test a proof-of-concept for the use of genomic signatures in predicting fungal phytopathogenic lifestyles and traits during biosurveillance activities. Our machine learning feature sets were derived from genome annotation data of carbohydrate-active enzymes (CAZymes), peptidases, secondary metabolite clusters (SMCs), transporters, and transcription factors. We found that machine learning could successfully predict fungal lifestyles and traits across taxonomic groups, with the best predictive performance coming from feature sets comprising CAZyme, peptidase, and SMC data. While phylogeny was an important component in most predictions, the inclusion of genomic data improved prediction performance for every lifestyle and trait tested. Plant pathogenicity was one of the best-predicted traits, showing the promise of predictive genomics for biosurveillance applications. Furthermore, our machine learning approach revealed expansions in the number of genes from specific CAZyme and peptidase families in the genomes of plant pathogens compared to non-phytopathogenic genomes (saprotrophs, endo- and ectomycorrhizal fungi). Such genomic feature profiles give insight into the evolution of fungal phytopathogenicity and could be useful to predict the risks of unknown fungi in future biosurveillance activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567782 | PMC |
http://dx.doi.org/10.1038/s41598-023-44005-w | DOI Listing |
Alzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Background: In Alzheimer's Disease (AD) trials, clinical scales are used to assess treatment effect in patients. Minimizing statistical uncertainty of trial outcomes is an important consideration to increase statistical power. Machine learning models can leverage baseline data to create AI-generated digital twins - individualized predictions (or prognostic scores) of how each patient's clinical outcomes may change during a trial assuming they received placebo.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Imperial College London, London, United Kingdom; UK Dementia Research Institute, Care Research and Technology Centre, London, United Kingdom.
Background: Close to 23% of unplanned hospital admissions for people living with dementia (PLWD) are due to potentially preventable causes such as severe urinary tract infections (UTIs), falls, and respiratory problems. These affect the well-being of PLWD, cause stress to carers and increase pressure on healthcare services.
Method: We use routinely collected in-home sensory data to monitor nocturnal activity and sleep data.
Alzheimers Dement
December 2024
Department of Psychology & Language Sciences, University College London, London, United Kingdom.
Background: Dysphagia is an important feature of neurodegenerative diseases and potentially life-threatening in primary progressive aphasia (PPA), but remains poorly characterised in these syndromes. We hypothesised that dysphagia would be more prevalent in nonfluent/agrammatic variant (nfv)PPA than other PPA syndromes, predicted by accompanying motor features and associated with atrophy affecting regions implicated in swallowing control.
Methods: In a retrospective case-control study at our tertiary referral centre, we recruited 56 patients with PPA (21 nfvPPA, 22 semantic variant (sv)PPA, 13 logopenic variant (lv)PPA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!