Leukemia is the 15th most common cancer in adults and the first most common cancer in children under the age of five, and unfortunately, it accounts for many deaths every year. Since leukemia chemotherapy usually fails due to chemotherapy resistance and disease relapse, many efforts are being made to develop new methods of leukemia treatment. Therefore, for the first time, we decorated halloysite nanotubes (HNTs) with green silver nanoparticles (Ag NPs) with the help of Moringa Peregrina leaves extract to increase the solubility of Ag NPs and to use the protective ability of HNTs against lipid peroxidation in erythrocytes. Cell survival assay by the MTT method showed that HNTs-Ag NPs can decrease the survival of Jurkat T-cells to about 10% compared to the control. The IC value was estimated as 0.00177 mg/mL after 96 h of treatment. Investigating the expression of genes involved in apoptosis by Real-time PCR proved that decorated HNTs with Ag NPs can increase the Bak1/Bclx ratio by 17.5 times the control group. Also, the expression of the caspase-3 gene has increased 10 times compared to the control. Finally, the reduction of malondialdehyde production after 24 h proved that the presence of HNTs can have a good protective effect on lipid peroxidation in erythrocytes. Therefore, on the one hand, we can hope for the ability of HNTs-Ag NPs to induce apoptosis in blood cancer cells and on the other hand for its protective effects on normal blood cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567680PMC
http://dx.doi.org/10.1038/s41598-023-43978-yDOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
12
halloysite nanotubes
8
green silver
8
silver nanoparticles
8
common cancer
8
peroxidation erythrocytes
8
hnts-ag nps
8
compared control
8
nps
5
synthesis halloysite
4

Similar Publications

It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature.

View Article and Find Full Text PDF

Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.

View Article and Find Full Text PDF

Redox biomarker levels in patients with myelodysplastic syndrome.

Biomed Rep

March 2025

Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, Larissa 41500, Greece.

Myelodysplastic syndrome (MDS) is a heterogeneous clonal disorder characterized by insufficient hematopoiesis, peripheral blood cytopenia and an increased risk for malignant transformation to acute myeloid leukemia. Several factors, such as age, sex and lifestyle, promote the development of MDS syndrome. Oxidative stress, along with its detrimental effects, cause hematological disorders; however, its role in the pathogenesis of MDS is unknown.

View Article and Find Full Text PDF

Introduction: Oxyresveratrol (ORes) exhibits significant anticancer activity, particularly against breast cancer. However, its exact mechanism of action (MOA) remains unclear. This study aimed to investigate the pharmacological activity and underlying MOA.

View Article and Find Full Text PDF

Effect of halo-tolerance gene Hal5 on ethanol tolerance of .

BBA Adv

October 2024

Department of Biochemistry, Panjab University, Chandigarh 160014, India.

Hal5 gene is involved in halo-tolerance of during high salt stress. Ethanol stress and high salt stress have similarities, as both decrease the availability of water for cells and strain the osmotic homeostasis across the cell membrane. The Hal5 over-expression strain of yeast has more ethanol tolerance, but the Hal5 null mutant strain also has more ethanol tolerance than the wild-type strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!