The fractional increase in global mean precipitation ([Formula: see text]) is a first-order measure of the hydrological cycle intensification under anthropogenic warming. However, [Formula: see text] varies by a factor of more than three among model projections, hindering credible assessments of the associated climate impacts. The uncertainty in [Formula: see text] stems from uncertainty in both hydrological sensitivity (global mean precipitation increase per unit warming) and climate sensitivity (global mean temperature increase per forcing). Here, by investigating hydrological and climate sensitivities in a unified surface-energy-balance perspective, we find that both sensitivities are significantly correlated with surface shortwave cloud feedback, which is further linked to the climatological pattern of cloud shortwave effect. The observed pattern of cloud effect thus constrains both sensitivities and consequently constrains [Formula: see text]. The 5%-95% uncertainty range of [Formula: see text] from 1979-2005 to 2080-2100 under the high-emission (moderate-emission) scenario is constrained from 6.34[Formula: see text]3.53% (4.19[Formula: see text]2.28%) in the raw ensemble-model projection to 7.03[Formula: see text]2.59% (4.63[Formula: see text]1.71%). The constraint thus suggests a higher most-likely [Formula: see text] and reduces the uncertainty by ~25%, providing valuable information for impact assessments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567723 | PMC |
http://dx.doi.org/10.1038/s41467-023-42181-x | DOI Listing |
Sci Rep
January 2025
Department of Physics, College of Science, University of Thi-Qar, Nasiriya, Iraq.
This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.
View Article and Find Full Text PDFSci Rep
January 2025
Military Institute of Engineering, Praça General Tibúrcio 80, Urca, Rio de Janeiro, RJ, 22290-270, Brazil.
The antiscale magnetic treatment (ASMT) claims to utilize magnetic field to combat scaling. However, its underlying mechanism, effectiveness, and reliability remain controversial. To address these contentious aspects, we analyze the influence of a magnetic field on the different stages of typical scale formation, using [Formula: see text] as a model scale.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.
Bubbles present in saline water typically exhibit a prolonged lifetime, making them attractive for various engineering processes. Herein, we unveil a transition from delayed bubble coalescence to rapid bursting within about one millisecond in salty solutions. The key aspect in understanding this transition lies in the combined influences of surface deformation and ion surface excess instead of characterizing the ions alone.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Phytopathologie und Pflanzenschutz, Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
Iron plays a prominent role in various biological processes and is an essential element in almost all organisms, including plant-pathogenic fungi. As a transition element, iron occurs in two redox states, Fe and Fe, the transition between which generates distinct reactive oxygen species (ROS) such as HO, OH anions, and toxic OH· radicals. Thus, the redox status of Fe determines ROS formation in pathogen attack and plant defense and governs the outcome of pathogenic interactions.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mathematics and Statistics, International Islamic University Islamabad, Pakistan.
Improving human health and comfort in buildings requires efficient temperature regulation. Temperature control system has a significant contribution in minimizing the impact of climate change. Temperature control system is used in industry to control temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!