Deep generative models of LDLR protein structure to predict variant pathogenicity.

J Lipid Res

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA. Electronic address:

Published: December 2023

The complex structure and function of low density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep generative models, including Evolutionary model of Variant Effect (EVE), Evolutionary Scale Modeling (ESM), and AlphaFold 2 (AF2), have enabled significant progress in the prediction of protein structure and function. ESM and EVE directly estimate the likelihood of a variant sequence but are purely data-driven and challenging to interpret. AF2 predicts LDLR structures, but variant effects are explicitly modeled by estimating changes in stability. We tested the effectiveness of these models for predicting variant pathogenicity compared to established methods. AF2 produced two distinct conformations based on a novel hinge mechanism. Within ESM's hidden space, benign and pathogenic variants had different distributions. In EVE, these distributions were similar. EVE and ESM were comparable to Polyphen-2, SIFT, REVEL, and Primate AI for predicting binary classifications in ClinVar. However, they were more strongly correlated with experimental measures of LDL uptake. AF2 poorly performed in these tasks. Using the UK Biobank to compare association with clinical phenotypes, ESM and EVE were more strongly associated with serum LDL-C than Polyphen-2. ESM was able to identify variants with more extreme LDL-C levels than EVE and had a significantly stronger association with atherosclerotic cardiovascular disease. In conclusion, AF2 predicted LDLR structures do not accurately model variant pathogenicity. ESM and EVE are competitive with prior scoring methods for prediction based on binary classifications in ClinVar but are superior based on correlations with experimental assays and clinical phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696256PMC
http://dx.doi.org/10.1016/j.jlr.2023.100455DOI Listing

Publication Analysis

Top Keywords

variant pathogenicity
12
esm eve
12
deep generative
8
generative models
8
protein structure
8
structure function
8
model variant
8
ldlr structures
8
distributions eve
8
binary classifications
8

Similar Publications

Glucocorticoid resistance syndrome (GRS) is caused by inactivating pathogenic variants in the glucocorticoid receptor gene . Reduced glucocorticoid receptor signaling leads to decreased tissue sensitivity to cortisol and resultant biochemical hypercortisolism without the classic clinical features of Cushing syndrome. Patients variably present with signs and symptoms of mineralocorticoid and androgen excess from ACTH overstimulation of the adrenal cortex.

View Article and Find Full Text PDF

The ongoing COVID-19 pandemic has triggered extensive research, mainly focused on identifying effective therapeutic agents, specifically those targeting highly pathogenic SARS-CoV-2 variants. This study aimed to investigate the antiviral efficacy and anti-inflammatory activity of herbal extracts derived from and , using a Golden Syrian hamster model infected with Delta, a representative variant associated with severe COVID-19. Hamsters were intranasally inoculated with the SARS-CoV-2 Delta variant and orally administered either vehicle control, , or extract at a dosage of 1000 mg/kg/day.

View Article and Find Full Text PDF

Background: Delays in diagnosing rare genetic disorders often arise due to limited awareness and systemic challenges in primary care. This case highlights the importance of a holistic approach to patient care, encompassing timely detection and comprehensive evaluation of clinical features.

Methods: We report the case of a 21-year-old Ecuadorian male with facial and hand dysmorphias, cardiomegaly, pulmonary hypertension, and patent ductus arteriosus (PDA).

View Article and Find Full Text PDF

Alternative splicing of EZH2 regulated by SNRPB mediates hepatocellular carcinoma progression via BMP2 signaling pathway.

iScience

January 2025

Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.

Increasing evidence suggests that aberrant alternative splicing plays crucial roles in tumorigenesis. However, the function of EZH2 splice variants as well as the mechanism by which EZH2 alternative splicing occurs in hepatocellular carcinoma (HCC) remain elusive. Here, we analyzed both our own and published transcriptomic data, obtaining 19 splice variants of EZH2 in addition to canonical full-length EZH2-A in HCC.

View Article and Find Full Text PDF

The efficient immobilization of capture antibodies is crucial for timely pathogen detection during global pandemic outbreaks. Therefore, we proposed a silica-binding protein featuring core functional domains (cSP). It comprises a peptide with a silica-binding tag designed to adhere to silica surfaces and tandem protein G fragments (2C2) for effective antibody capture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!