A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A fungal-algal self-flocculation system and its application to treat filter sludge leachate in the sugar industry. | LitMetric

A fungal-algal self-flocculation system and its application to treat filter sludge leachate in the sugar industry.

Environ Pollut

College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China; Academy of Sugarcane and Sugar Industry, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China. Electronic address:

Published: December 2023

The efficient and economical treatment of wastewater using microalgae has attracted much attention. However, harvesting microalgae cells from treated wastewater remains challenging. In the present study, a Chlorella vulgaris suspension containing filamentous fungi Aspergillus niger and Chaetomium gracile was successfully used to construct a self-flocculating system, with a microalgae flocculation efficiency of 99.6% achieved by gravity sedimentation within 4 h. The diameter of fungi played an important role in determining flocculation efficiency, and the optimal particle size was 10 mm. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) results indicated that the sweeping action of fungal mycelia and the interaction between the functional groups of fungi and the C. vulgaris surface contributed to improve flocculation. Co-cultivation of C. vulgaris and fungi could effectively remove 83.53%, 94.45% and 76.88% of total phosphorus, total nitrogen and chemical oxygen demand, respectively, from the sludge leachate from a sugar mill. The fungal-algal biomass reached 5.75 g/L. Herein, the constructed self-flocculation system had coupled efficient flocculation of C. vulgaris with removal of pollutants from wastewater in a short period of time, and providing a green, pollution-free, low-cost method for simultaneous wastewater treatment and the production of high quality biomass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.122718DOI Listing

Publication Analysis

Top Keywords

self-flocculation system
8
sludge leachate
8
leachate sugar
8
flocculation efficiency
8
fungal-algal self-flocculation
4
system application
4
application treat
4
treat filter
4
filter sludge
4
sugar industry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!