Effective vascularization during wound healing remains a critical challenge in the regeneration of skin tissue. On the other hand, mesenchymal stem cell (MSC) to endothelial phenotype transition (MEnDoT) is a potential phenomenon grossly underexplored in vascularized skin tissue engineering. Vitamin D3 has a proven role in promoting MEnDoT. Hence, a D3-incorporated scaffold made with biocompatible materials such as chitosan, collagen and fibrinogen should be able to promote endothelial lineage transition in vitro for tissue engineering purposes. In this study, we developed vitamin D3 incorporated chitosan-collagen-fibrinogen (CCF-D3) scaffolds physically crosslinked under UV and conducted thorough physicochemical and biological assays on it compared to a control scaffold without vitamin D3. Our study for the first time reports the potential vascularization property of the CCF-D3 scaffold by inducing the transitions of dental pulp MSC to endothelial lineage via the HIF-1/IGF-1/VEGF pathways. MSC seeded on UV-exposed CCF-D3 scaffolds had higher cell viability and transitioned towards endothelial lineage was observed by elevated proliferative and endothelial-specific gene expressions and flow cytometric analysis of SCA-1+ antibody. The difference in VEGF-A and α-SMA expressions was also observed in the D3-CCF scaffold compared to the scaffolds without D3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127325DOI Listing

Publication Analysis

Top Keywords

endothelial lineage
12
hif-1/igf-1/vegf pathways
8
dental pulp
8
skin tissue
8
msc endothelial
8
tissue engineering
8
ccf-d3 scaffolds
8
endothelial
5
vitamin
4
vitamin d3-incorporated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!