Dietary fiber is crucial for human health mainly due to its impact on gut microbiota structure and metabolites. This study aimed to investigate the impact of Dendrobium officinale polysaccharides (DOP) and two common fibers (β-glucan and inulin) on the gut microbiome structure and metabolic profile in vitro. Fecal samples were obtained from 30 healthy volunteers, which were then individually subjected to fermentation with each type of fiber. The results revealed that all fibers were efficiently degraded by gut microbiota, with DOP exhibiting a slower fermentation rate compared to β-glucan and inulin. The fermentation of all fibers led to a significant increase in the production of short-chain fatty acids (SCFAs) and a reduction in branched-chain fatty acids (BCFAs), sulfides, phenols, and indole. Moreover, the abundance of unclassified Enterobacteriaceae, which was positively correlated with sulfide, phenols, and indole levels, was significantly reduced by all fibers. Additionally, DOP specifically promoted the growth of Parabacteroides, while β-glucan and inulin promoted the growth of Bifidobacterium and Faecalibacterium. Taken together, these findings enhance our understanding of the role of DOP, β-glucan, and inulin in modulating gut microbiota and metabolites, where the fermentation with fecal bacteria from different volunteers could provide valuable insights for personalized therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127326DOI Listing

Publication Analysis

Top Keywords

β-glucan inulin
20
gut microbiota
12
dendrobium officinale
8
officinale polysaccharides
8
fatty acids
8
phenols indole
8
promoted growth
8
β-glucan
5
inulin
5
fermentation
5

Similar Publications

Inulin Dehydration to 5-HMF in Deep Eutectic Solvents Catalyzed by Acidic Ionic Liquids Under Mild Conditions.

ChemSusChem

January 2025

Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italia.

Valorization of carbohydrate-rich biomass by conversion into industrially relevant products is at the forefront of research in sustainable chemistry. In this work, we studied the inulin conversion into 5-hydroxymethylfurfural, in deep eutectic solvents, in the presence of acidic task-specific ionic liquids as catalysts. We employed aliphatic and aromatic ionic liquids as catalysts, and choline chloride-based deep eutectic solvents bearing glycols or carboxylic acids, as solvents.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of dietary inulin (0-30 g/kg) on duck meat, muscle fiber types, meat quality, antioxidant ability, Low-field nuclear magnetic resonance, amino acid and off-flavor. These results indicated that inulin promoted the conversion of type II to type I muscle fibers. Compared with the control group, supplementation with 20 g/kg inulin reduced ( < 0.

View Article and Find Full Text PDF

Introduction: The incidence of type 2 diabetes mellitus (T2DM) has increased in recent years. Alongside traditional pharmacological treatments, nutritional therapy has emerged as a crucial aspect of T2DM management. Inulin, a fructan-type soluble fiber that promotes the growth of probiotic species like and , is commonly used in nutritional interventions for T2DM.

View Article and Find Full Text PDF

Associated to various illnesses, Western Diet (WD) is acknowledged to have deleterious effects on human gut microbiota, decreasing bacterial diversity, lowering gut bacteria associated to health (such as , while increasing those linked to diseases (e.g., ).

View Article and Find Full Text PDF

Butyrate-producing bacteria (BPB) benefit the health of aquatic animals. This current study aimed to isolate BPB from the intestines of and assess their probiotic potential. The results showed that nine isolates were obtained in vitro from the gut of , including six , two , and one .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!