Cultured A6 epithelial cells from toad kidney form confluent monolayers with tight junctions separating the apical and basolateral membranes. These two membrane domains have distinct compositions and functions. Thus, sodium is actively transported across the epithelia from the apical to basolateral surface via amiloride-inhibitable sodium channels located in the apical membrane. Sodium transport is stimulated by vasopressin, cholera toxin, and 8-bromo-cAMP applied to the basolateral surface where the receptors, adenylate cyclase, and Na+/K+-ATPase are located. In a previous study (Spiegel, S., Blumenthal, R., Fishman, P.H., and Handler, J.S. (1985) Biochim. Biophys. Acta 821, 310-318), we demonstrated that exogenous gangliosides inserted into the apical membrane of A6 epithelia do not redistribute to the basolateral membrane. With the ability to vary selectively the ganglioside composition of the apical membrane, we examined the effects of gangliosides on sodium transport in A6 epithelia. When the apical surface of A6 epithelia were exposed to exogenous gangliosides, sodium transport in response to vasopressin, cholera toxin, and 8-bromo-cAMP was enhanced compared to epithelia not exposed to gangliosides. The effect was observed with bovine brain gangliosides, NeuAc alpha 2----3Gal beta 1----3GalNAc beta 1----4[NeuAc alpha 2----3]Gal beta 1----4Glc beta 1----Cer (GD1a) and Gal beta-1----3GalNAc beta 1----4[NeuAc alpha 2----3]Gal beta 1----4Glc beta 1----Cer (GM1), but not with the less complex ganglioside, Neu-Ac alpha 2----3Gal beta 1----4Glc beta 1----Cer (GM3). We examined A6 cells for endogenous gangliosides and found that, whereas GM3 was a major ganglioside, only trace amounts of GM1 and GD1a were present. Based on cell surface and metabolic labeling studies, these gangliosides were synthesized by the cells and were present on the apical as well as the basolateral surface. Bacterial sialidase, which hydrolyzes more complex gangliosides to GM1, was used to modify the endogenous gangliosides on the apical surface; after sialidase treatment, the epithelia were more responsive to vasopressin, cholera toxin, and 8-bromo-cAMP. Thus, gangliosides may be modulators of sodium channels present in the apical membrane of epithelial cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sodium transport
16
apical membrane
16
basolateral surface
12
vasopressin cholera
12
cholera toxin
12
toxin 8-bromo-camp
12
beta 1----4glc
12
1----4glc beta
12
beta 1----cer
12
gangliosides
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!