Online adaptive radiotherapy aims to fully leverage the advantages of highly conformal therapy by reducing anatomical and set-up uncertainty, thereby alleviating the need for robust treatments. This requires extensive automation, among which is the use of deformable image registration (DIR) for contour propagation and dose accumulation. However, inconsistencies in DIR solutions between different algorithms have caused distrust, hampering its direct clinical use. This work aims to enable the clinical use of DIR by developing deep learning methods to predict DIR uncertainty and propagating it into clinically usable metrics.Supervised and unsupervised neural networks were trained to predict the Gaussian uncertainty of a given deformable vector field (DVF). Since both methods rely on different assumptions, their predictions differ and were further merged into a combined model. The resulting normally distributed DVFs can be directly sampled to propagate the uncertainty into contour and accumulated dose uncertainty.The unsupervised and combined models can accurately predict the uncertainty in the manually annotated landmarks on the DIRLAB dataset. Furthermore, for 5 patients with lung cancer, the propagation of the predicted DVF uncertainty into contour uncertainty yielded for both methods anof less than 3%. Additionally, the(DVH) encompass well the accumulated proton therapy doses using 5 different DIR algorithms. It was additionally shown that the unsupervised model can be used for different DIR algorithms without the need for retraining.Our work presents first-of-a-kind deep learning methods to predict the uncertainty of the DIR process. The methods are fast, yield high-quality uncertainty estimates and are useable for different algorithms and applications. This allows clinics to use DIR uncertainty in their workflows without the need to change their DIR implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad0282DOI Listing

Publication Analysis

Top Keywords

deep learning
12
uncertainty
11
dir
9
deformable image
8
image registration
8
contour propagation
8
propagation dose
8
dose accumulation
8
online adaptive
8
adaptive radiotherapy
8

Similar Publications

In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.

View Article and Find Full Text PDF

Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res

January 2025

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.

View Article and Find Full Text PDF

Background: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from hospitals and self-reported physician diagnoses or typical schizophrenia symptoms. These approaches are likely to underestimate the true prevalence owing to stigma, poor insight, or lack of access to health care among respondents.

View Article and Find Full Text PDF

Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!