Tirapazamine combined with photodynamic therapy improves the efficacy of ABZSO nanoparticles on Echinococcosis granulosus via further enhancing "breaking-then-curing".

J Photochem Photobiol B

Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang 830011, China. Electronic address:

Published: November 2023

Background: Photodynamic therapy (PDT) has a promising application prospect in Echinococcus granulosus (Egs), however, the hypoxic environment of Egs and the hypoxia associated with PDT will greatly limit its effects. As a hypoxic-activated pre-chemotherapeutic drug, tirapazamine (TPZ) can be only activated and produce cytotoxicity under hypoxia environment. Albendazole sulfoxide (ABZSO) is the first choice for the treatment of Egs. This study aimed to explore the effects of ABZSO nanoparticles (ABZSO NPs), TPZ combined with PDT on the activity of Egs in vitro and in vivo.

Methods: The Egs were divided into control, ABZSO NPs, ABZSO NPs + PDT, and ABZSO NPs + TPZ + PDT groups, and the viability of Egs was determined using methylene blue staining. Then, the ROS, LDH and ATP levels were measured using their corresponding assay kit, and H2AX and TopoI protein expression was detected by western blot. The morphology of Egs with different treatments was observed using hematoxylin eosin (HE) staining and scanning electron microscopy (SEM). After that, the in vivo efficacy of ABZSO NPs, TPZ and PDT on Egs was determined in a Egs infected mouse model.

Results: In vitro experiments showed that the combined treatment of TPZ, ABZSO NPs and PDT significantly inhibited Egs viability; and significantly increased ROS levels and LDH contents, while decreased ATP contents in Egs; as well as up-regulated H2AX and down-regulated TopoI protein expression. HE staining and SEM results showed that breaking-then-curing treatment seriously damaged the Egs wall. Additionally, in vivo experiments found that the combination of ABZSO NPs, PDT and TPZ had more serious calcification and damage of the wall structure of cysts.

Conclusions: ABZSO NPs combined with TPZ and PDT has a better inhibitory effect on the growth of Egs in vitro and in vivo based on the strategy of "breaking-then-curing".

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2023.112798DOI Listing

Publication Analysis

Top Keywords

abzso nps
24
egs
13
abzso
11
photodynamic therapy
8
efficacy abzso
8
abzso nanoparticles
8
nps tpz
8
egs vitro
8
egs determined
8
topoi protein
8

Similar Publications

Tirapazamine combined with photodynamic therapy improves the efficacy of ABZSO nanoparticles on Echinococcosis granulosus via further enhancing "breaking-then-curing".

J Photochem Photobiol B

November 2023

Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang 830011, China. Electronic address:

Background: Photodynamic therapy (PDT) has a promising application prospect in Echinococcus granulosus (Egs), however, the hypoxic environment of Egs and the hypoxia associated with PDT will greatly limit its effects. As a hypoxic-activated pre-chemotherapeutic drug, tirapazamine (TPZ) can be only activated and produce cytotoxicity under hypoxia environment. Albendazole sulfoxide (ABZSO) is the first choice for the treatment of Egs.

View Article and Find Full Text PDF

Albumin nanostructure assisted ABZ anti-parasite immune therapy for T. spiralis muscle infection.

Biomater Adv

July 2023

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China. Electronic address:

Currently, the treatment of Trichinella spiralis (T. spiralis) intracellular infection by oral administration of albendazole (ABZ) is hampered by its poor aqueous solubility and rapid metabolism. Herein, the nanoparticles with BSA and ABZ (ABZ-BSA Nps) were constructed by a desolvation technique in the study.

View Article and Find Full Text PDF

In this research study, a method of dispersive-micro-solid phase extraction (D-µ-SPE) combined with molecularly imprinted polymer nanoparticles (MIP-NPs) with HPLC-UV was developed for the fast and selective detection of the trace amount of albendazole sulfoxide (ABZSO) in the biological samples. To investigate the effective factors on ABZSO microextraction by the method, central composite design (CCD) was utilized, and the optimum conditions for ABZSO microextraction were sample pH of 8.0, MIP-mass of 15 mg, sonication time of 12 min, and eluent (methanol) volume of 0.

View Article and Find Full Text PDF

Albendazole is known as the drug of choice for medical treatment of cystic echinococcosis (CE). Albendazole sulfoxide (ABZ-SO), as the main active metabolite of albendazole, has low efficacy in the disease due to low water solubility and poor absorptivity. PLGA nanoparticles (NPs) enhance the dissolution of poorly soluble drugs, and chitosan (CS) coating enhances oral drug delivery of NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!