Tattoos have been gaining popularity in recent years, leading to a growing interest in researching tattoo inks and the tattooing process itself. Since the exposure to soluble tattoo ink ingredients has not yet been investigated, we here present the method validation for a short-term biokinetics study on soluble tattoo ink ingredients. The three tracers 4-aminobenzoic acid (PABA), 2-phenoxyethanol (PEtOH) and iodine will be added to commercially available tattoo inks, which will subsequently be used on healthy study participants. Following the tattooing process, blood and urine will be sampled at specific time points and analysed for these tracers. For this purpose, a method using liquid chromatography separation coupled to a quadrupole time-of-flight mass spectrometer (LC-QTOF-MS) in positive and negative ESI mode for the quantification of PABA, PEtOH and selected metabolites and an inductively-coupled plasma (ICP)-MS method for the determination of iodine were developed and validated. For LC-QTOF-MS analysis, the most applicable additives for LC eluents (0.01 % formic acid for positive and 0.005 % acetic acid for negative mode) were identified. Protein precipitation with acetonitrile was chosen for sample preparation. The methods were validated for selectivity, specificity, carryover, linearity, limit of detection (LOD) and quantification (LOQ), matrix effects, accuracy and precision, stability under different conditions and dilution integrity according to national and international guidelines with an allowed maximum variation of ±15 %. The LC-QTOF-MS method met the imposed guideline criteria for most parameters, however, some metabolites showed strong matrix effects. Validation of the ICP-MS method revealed that the KED-H collision mode is superior to the standard analysis mode due to enhanced method accuracy. The methods were validated for the relevant matrices plasma, urine, tattoo ink and tattoo consumables and proved to be applicable for the main target substances in the short-term biokinetics study. A proof-of-concept study showed successful quantification of iodine and PABA metabolites. The PEtOH metabolite was also quantified, but showed strong matrix effects in urine. Therefore standard addition was selected as an alternative quantification method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2023.123891DOI Listing

Publication Analysis

Top Keywords

tattoo ink
16
ink ingredients
12
matrix effects
12
4-aminobenzoic acid
8
method
8
tattoo inks
8
tattooing process
8
soluble tattoo
8
short-term biokinetics
8
biokinetics study
8

Similar Publications

Introduction: Preoperative identification of the site of rectal cancer surgery is crucial for ensuring accurate tumor localization and resection. Commonly employed methods include contrast-enhanced enterography and endoscopic marking techniques, such as clipping and India ink tattooing. However, India ink tattooing poses challenges, including obstruction of the surgical field, ink leakage into the abdominal cavity, and potential complications such as peritonitis and adhesive bowel obstruction.

View Article and Find Full Text PDF

Tattooing has become a popular global trend in industrialised countries, with the highest prevalence rates of up to 30-40 % in the adult population younger than 40 years. Common tattoo inks may contain heavy metals, polycyclic aromatic hydrocarbons, and primary aromatic amines, toxic if exceeding permissible limits. It is estimated that about 14.

View Article and Find Full Text PDF

Tattoos have been a ubiquitous phenomenon throughout history. Now, the demand for tattoo removal for aesthetic or practical reasons is growing rapidly. This study outlines the results of field investigations into the chemical and biological removal of tattoo inks (Hexadecachlorinate copper phthalocyanine-CClCuN-CAS no° 1328-53-6).

View Article and Find Full Text PDF

Causes, patterns, and epidemiology of tattoo-associated infections since 1820.

Lancet Microbe

November 2024

Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA. Electronic address:

Despite increased awareness and public health initiatives, the incidence of microbial infections related to tattoos has increased since 2000. Building on the first paper in this two-part Series, which detailed the microbiological aspects of tattoo-related infections over the past two centuries from 1820 to 2023, this second paper describes the patterns, causes, and other related epidemiological factors of these infections. Since 2000, bacterial outbreaks, particularly those caused by non-tuberculous mycobacteria, have increased, prompting a re-evaluation of tattoos as a serious public health risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!