Retinal Müller glia (MG) can act as stem-like cells to generate new neurons in both zebrafish and mice. In zebrafish, retinal regeneration is innate and robust, resulting in the replacement of lost neurons and restoration of visual function. In mice, exogenous stimulation of MG is required to reveal a dormant and, to date, limited regenerative capacity. Zebrafish studies have been key in revealing factors that promote regenerative responses in the mammalian eye. Increased understanding of how the regenerative potential of MG is regulated in zebrafish may therefore aid efforts to promote retinal repair therapeutically. Developmental signaling pathways are known to coordinate regeneration following widespread retinal cell loss. In contrast, less is known about how regeneration is regulated in the context of retinal degenerative disease, i.e., following the loss of specific retinal cell types. To address this knowledge gap, we compared transcriptomic responses underlying regeneration following targeted loss of rod photoreceptors or bipolar cells. In total, 2,531 differentially expressed genes (DEGs) were identified, with the majority being paradigm specific, including during early MG activation phases, suggesting the nature of the injury/cell loss informs the regenerative process from initiation onward. For example, early modulation of Notch signaling was implicated in the rod but not bipolar cell ablation paradigm and components of JAK/STAT signaling were implicated in both paradigms. To examine candidate gene roles in rod cell regeneration, including several immune-related factors, CRISPR/Cas9 was used to create G0 mutant larvae (i.e., "crispants"). Rod cell regeneration was inhibited in stat3 crispants, while mutating stat5a/b, c7b and txn accelerated rod regeneration kinetics. These data support emerging evidence that discrete responses follow from selective retinal cell loss and that the immune system plays a key role in regulating "fate-biased" regenerative processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593236PMC
http://dx.doi.org/10.1371/journal.pgen.1010905DOI Listing

Publication Analysis

Top Keywords

retinal cell
16
retinal
8
selective retinal
8
cell ablation
8
regenerative responses
8
cell loss
8
signaling implicated
8
rod cell
8
cell regeneration
8
cell
7

Similar Publications

Ginsenoside Ro prevents endothelial injury via promoting Epac1/AMPK- mediated mitochondria protection in early diabetic retinopathy.

Pharmacol Res

December 2024

Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education. Electronic address:

Diabetic retinopathy (DR) is a blinding complication of microangiopathy. First-line therapeutic drugs are all focused on late-stage DR and have several side effects, which could not meet clinical needs. The plant-derived ginsenoside Ro (Ro) has a variety of effective anti-inflammatory, immune-regulating, and cardiovascular protective effects, but its microvascular protective effects are rarely studied.

View Article and Find Full Text PDF

Assessment of Photoreceptor Recovery and Visual Function Utilizing Adaptive Optics and Microperimetry in Patients with Surgically Closed Macular Holes.

Photodiagnosis Photodyn Ther

December 2024

Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin, China, Tianjin Key Laboratory of Ocular Trauma, Tianjin, China, Tianjin Institute of Eye Health and Eye Diseases, Tianjin, China, China-UK "Belt and Road" Ophthalmology. Electronic address:

Background: This study investigated the association between photoreceptor structural restoration and visual function outcomes in patients undergoing surgery for closed macular holes (MHs). Using adaptive optics scanning laser ophthalmoscopy (AOSLO) and microperimetry, we aimed to provide a more detailed understanding of photoreceptor recovery and visual improvement in closed MHs.

Methods: We conducted a retrospective observational study of 31 eyes of 28 patients who underwent vitrectomy with internal limiting membrane (ILM) peeling to treat idiopathic MHs.

View Article and Find Full Text PDF

Purpose: The relationship between retinal morphology, as assessed by optical coherence tomography (OCT), and retinal function in microperimetry (MP) has not been well studied, despite its increasing importance as an essential functional endpoint for clinical trials and emerging therapies in retinal diseases. Normative databases of healthy ageing eyes are largely missing from literature.

Methods: Healthy subjects above 50 years were examined using two MP devices, MP-3 (NIDEK) and MAIA (iCare).

View Article and Find Full Text PDF

We used machine learning to investigate the residual visual field (VF) deficits and macula retinal ganglion cell (RGC) thickness loss patterns in recovered optic neuritis (ON). We applied archetypal analysis (AA) to 377 same-day pairings of 10-2 VF and optical coherence tomography (OCT) macula images from 93 ON eyes and 70 normal fellow eyes ≥ 90 days after acute ON. We correlated archetype (AT) weights (total weight = 100%) of VFs and total retinal thickness (TRT), inner retinal thickness (IRT), and macular ganglion cell-inner plexiform layer (GCIPL) thickness.

View Article and Find Full Text PDF

Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!