Background: Cetuximab and panitumumab, two anti-EGFR therapies, are widely used for third-line therapy of metastatic colorectal cancer (mCRC) with wild-type KRAS, but there remains uncertainty around their cost effectiveness. The objective of this analysis was to conduct a real-world cost-effectiveness analysis of the policy change introducing KRAS testing and third-line anti-EGFR therapy mCRC in British Columbia (BC), Canada.
Methods: We conducted secondary analysis of administrative data for a cohort of mCRC patients treated in BC in 2006-2015. Patients potentially eligible for KRAS testing and third-line therapy after the policy change (July 2009) were matched 2:1 to pre-policy patients using genetic matching on propensity score and baseline covariates. Costs and survival time were calculated over an 8-year time horizon, with bootstrapping to characterize uncertainty around endpoints. Cost effectiveness was expressed using incremental cost-effectiveness ratios (ICER) and the probability of cost effectiveness at a range of thresholds.
Results: The cohort included 1757 mCRC patients (n = 456 pre-policy and n = 1304 post-policy; of those, n = 420 received cetuximab or panitumumab). There was a significant increase in survival and cost following the policy change. Adoption of KRAS testing and anti-EGFR therapy had an ICER of CA$73,759 per life-year gained (LYG) (95% CI 46,133-186,446). In scenario analysis, a reduction in cetuximab and panitumumab cost of at least 50% was required to make the policy change cost effective at a threshold of CA$50,000/LYG.
Conclusion: A policy of third-line anti-EGFR therapy informed by KRAS testing may be considered cost effective at thresholds above CA$70,000/LYG. Reduction in drug costs, through price discounts or potential future biosimilars, would make anti-EGFR therapy considerably more cost effective. By using real-world data for a large cohort with long follow-up we can assess the value of a policy of KRAS testing and anti-EGFR therapy achieved in practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721761 | PMC |
http://dx.doi.org/10.1007/s41669-023-00444-9 | DOI Listing |
Mod Pathol
January 2025
Department of Pathology, Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. About 10% of affected individuals have an inherited component. Deleterious germline variants increase the lifetime risk for PDAC and are often associated with an elevated risk for extra-pancreatic malignancies.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Biomedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Targeted covalent inhibition is a powerful therapeutic modality in the drug discoverer's toolbox. Recent advances in covalent drug discovery, in particular, targeting cysteines, have led to significant breakthroughs for traditionally challenging targets such as mutant KRAS, which is implicated in diverse human cancers. However, identifying cysteines for targeted covalent inhibition is a difficult task, as experimental and in silico tools have shown limited accuracy.
View Article and Find Full Text PDFIntroduction: Recent advances in the treatment of -mutant non-small cell lung cancer (NSCLC) have led to the development of KRAS inhibitors, such as sotorasib and adagrasib. However, resistance and disease progression remain significant challenges. In this study, we investigated the therapeutic potential of combining trastuzumab deruxtecan (T-DXd), an anti-HER2 antibody-drug conjugate, with sotorasib in -mutant NSCLC, while also evaluating HER2 expression in NSCLC samples.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Introduction: Lung cancer is the first cause of cancer death in the world, due to a delayed diagnosis and the absence of efficacy therapies. KRAS mutation occurs in 25% of all lung cancers and the concomitant mutations in LKB1 determine aggressive subtypes of these tumors. The improvement of therapeutical options for KRASG12C mutations has increased the possibility of treating these tumors, but resistance to these therapies has emerged.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!