CRISPR interference (CRISPRi) is a robust gene silencing technique that is ideal for targeting essential and conditionally essential (CE) genes. CRISPRi is especially valuable for investigating gene function in pathogens such as P. aeruginosa where essential and CE genes underlie clinically important phenotypes such as antibiotic susceptibility and virulence. To facilitate the use of CRISPRi in diverse bacteria-including P. aeruginosa-we developed a suite of modular, mobilizable, and integrating vectors we call, "Mobile-CRISPRi." We further optimized Mobile-CRISPRi for use in P. aeruginosa mouse models of acute lung infection by expressing the CRISPRi machinery at low levels constitutively, enabling partial knockdown of essential and CE genes without the need for an exogenous inducer. Here, we describe protocols for creating Mobile-CRISPRi knockdown strains and testing their phenotypes in a mouse pneumonia model of P. aeruginosa infection. In addition, we provide comprehensive guide RNA designs to target genes in common laboratory strains of P. aeruginosa and other Pseudomonas species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3473-8_2 | DOI Listing |
PLoS Genet
January 2025
Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.
Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.
Background: Male infertility (MI) is a polygenic condition mainly induced by spermatogenic failure/arrest or systemic disease with a large clinical spectrum. Lately, genetic sequencing allowed the identification of several variants implicated in both aforesaid situations.
Methods And Results: In this case study, we performed whole exome sequencing (WES) on the genomic DNA of a 37-year-old Moroccan man with Non-Obstructive Azoospermia.
Appl Microbiol Biotechnol
January 2025
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
Identifying hormone-like quorum sensing (QS) molecules in streptomycetes is challenging due to low production levels but is essential for understanding secondary metabolite biosynthesis and morphological differentiation. This work reports the discovery of a novel γ-butenolide-type signaling molecule (SFB1) via overexpressing its biosynthetic gene (orf18) in Streptomyces fradiae. SFB1 was found to be essential for production of tylosin through dissociating the binding of its receptor TylP (a transcriptional repressor) to target genes, thus activating the expression of tylosin biosynthetic gene cluster (tyl).
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
Vitamin B (cobalamin, herein B) is a key cofactor for most organisms being involved in essential metabolic processes. In microbial communities, B is often scarce, largely because only few prokaryotes can synthesize B and are thus considered B-prototrophs. B-auxotrophy is mostly manifested by the absence of the B-independent methionine synthase, MetE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!