Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate potential for improved multi-environment genomic prediction accuracy using structural variant markers. However, the degree of observed improvement is highly dependent on the genetic architecture of the trait. Breeders commonly use genetic markers to predict the performance of untested individuals as a way to improve the efficiency of breeding programs. These genomic prediction models have almost exclusively used single nucleotide polymorphisms (SNPs) as their source of genetic information, even though other types of markers exist, such as structural variants (SVs). Given that SVs are associated with environmental adaptation and not all of them are in linkage disequilibrium to SNPs, SVs have the potential to bring additional information to multi-environment prediction models that are not captured by SNPs alone. Here, we evaluated different marker types (SNPs and/or SVs) on prediction accuracy across a range of genetic architectures for simulated traits across multiple environments. Our results show that SVs can improve prediction accuracy, but it is highly dependent on the genetic architecture of the trait and the relative gain in accuracy is minimal. When SVs are the only causative variant type, 70% of the time SV predictors outperform SNP predictors. However, the improvement in accuracy in these instances is only 1.5% on average. Further simulations with predictors in varying degrees of LD with causative variants of different types (e.g., SNPs, SVs, SNPs and SVs) showed that prediction accuracy increased as linkage disequilibrium between causative variants and predictors increased regardless of the marker type. This study demonstrates that knowing the genetic architecture of a trait in deciding what markers to use in large-scale genomic prediction modeling in a breeding program is more important than what types of markers to use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-023-04469-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!