Currently, the most used methods of plastic scintillator (PS) manufacturing are cell casting and bulk polymerisation, extrusion, injection molding, whereas digital light processing (DLP) 3D printing technique has been recently introduced. For our research, we measured blue-emitting EJ-200, EJ-208, green-emitting EJ-260, EJ-262 cell cast and two types of blue-emitting DLP-printed PSs. The light output of the samples, with the same dimension of 10 mm × 10 mm × 10 mm, was compared. The light output of the samples, relative to the reference EJ-200 cell-cast scintillator, equals about 40-49 and 70-73% for two types of 3D-printed, and two green-emitting cell-casted PSs, respectively. Performance of the investigated scintillators is sufficient to use them in a plastic scintillation dosemeter operating in high fluence gamma radiation fields.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncac248DOI Listing

Publication Analysis

Top Keywords

light output
8
output samples
8
10 mm 10 mm
8
comparison cell
4
cell casted
4
casted 3d-printed
4
3d-printed plastic
4
plastic scintillators
4
scintillators dosimetry
4
dosimetry applications
4

Similar Publications

Prokineticin 2 protein is diurnally expressed in PER2 containing clock neurons in the mouse suprachiasmatic nucleus.

Peptides

January 2025

Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also knowns as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent.

View Article and Find Full Text PDF

Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs.

View Article and Find Full Text PDF

Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications.

Nat Commun

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China.

Skin-like sensors capable of detecting multiple stimuli simultaneously have great potential in cutting-edge human-machine interaction. However, realizing multimodal tactile recognition beyond human tactile perception still faces significant challenges. Here, an extreme environments-adaptive multimodal triboelectric sensor was developed, capable of detecting pressure/temperatures beyond the range of human perception.

View Article and Find Full Text PDF

Background: How tauopathy disrupts direct entorhinal cortex (EC) inputs to CA1 and their plasticity is understudied, despite its critical role in memory. Moreover, dysfunction of lateral EC (LEC) input is less clear, despite its relevance to early Alzheimer's disease pathogenesis. Here we examined how tau impacts long-term potentiation (LTP) of LEC→CA1 input in a transgenic model of tauopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!