The epididymis, a key component of the male reproductive system, controls spermatozoa's maturation, fertility, and storage. The objective of this study is to evaluate the histological, ultrastructural, and immunohistochemical variations in the epididymis of donkeys that occur throughout the year. During the breeding season (spring) and nonbreeding seasons (summer, autumn, and winter), 20 epididymis were collected from adult, clinically healthy donkeys. Compared to non-breeding seasons, the epididymal duct displayed a more active lining epithelium and more sperm in the lumen during the breeding season. The epithelial height is the lowest and the lumen is the widest during the breeding season. Furthermore, the epididymal epithelium in the tail region exhibits undulations with polyps-like projections. The epididymal epithelium is composed mainly of the principal, basal, and dark cells. Tight junction between adjacent principal cells is more obvious in the breeding season as compared to the non-breeding seasons. However, intraepithelial lymphocytes, phagocytic, and other immune cells are more frequent in non-breeding seasons. β-catenin, which is a component of the adherent junctions between adjacent PCs, exhibits more immunoreactivity during the spring. On the other hand, iNOS, an indicator of oxidative stress, reacts positively during the summer. Additionally, during non-breeding seasons, autophagy was detected within the epididymal epithelium which may be linked to stress adaptation. In conclusion, our findings suggest that the histological and ultrastructural characteristics of the epididymal epithelium are more active during spring compared to other seasons of the year. RESEARCH HIGHLIGHTS: The study aimed to evaluate the histological, ultrastructural, and immunohistochemical variations in the blood epididymal barrier (BEB) and epididymal epithelium of donkeys that occur throughout the year. In comparison to non-breeding seasons, the epididymal duct displayed a more active lining epithelium and more sperm in the lumen during the breeding season. The epithelial height is the lowest and the lumen is the widest during the breeding season. The epididymal epithelium in the tail region exhibits undulations with polyps-like projections that increase the surface area. β-catenin, which is a component of the adherent junctions between adjacent PCs, exhibits more immunoreactivity during the spring. On the other hand, iNOS, an indicator of oxidative stress, reacts positively during the summer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24436DOI Listing

Publication Analysis

Top Keywords

breeding season
24
epididymal epithelium
24
non-breeding seasons
20
histological ultrastructural
12
epididymal
10
variations epididymis
8
epididymis donkeys
8
blood epididymal
8
epididymal barrier
8
evaluate histological
8

Similar Publications

Analysis of the release pattern of floral aroma components of Rhus chinensis based on HS-SPME-GC-MS technique.

PLoS One

March 2025

Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, Yunnan, China.

Rhus chinensis, a native plant species of China, possesses significant economic value in the ornamental sector. This study investigates the floral fragrance components and release patterns of R. chinensis, thus providing a theoretical foundation for the utilization of its floral fragrance.

View Article and Find Full Text PDF

Seasonal and Diurnal Transcriptome Atlas in Natural Environment Reveals Flowering Time Regulatory Network in Alfalfa.

Plant Cell Environ

March 2025

State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Alfalfa (Medicago sativa L.) is a globally cultivated perennial forage legume. Flowering time, an important agronomic trait of alfalfa, is pivotal for farmers to determine the optimal harvest stage, thereby maximizing economic benefits.

View Article and Find Full Text PDF

Meta genetic analysis of melon sweetness.

Theor Appl Genet

March 2025

Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel.

Through meta-genetic analysis of Cucumis melo sweetness, we expand the description of the complex genetic architecture of this trait. Integration of extensive new results with published QTL data provides an outline towards construction of a melon sweetness pan-QTLome. An ultimate objective in crop genetics is describing the complete repertoire of genes and alleles that shape the phenotypic variation of a quantitative trait within a species.

View Article and Find Full Text PDF

The activities that define survival and reproductive success in animals depend on their physical performances. However, performance is a complex trait, and organisms must balance competing demands of multiple underlying factors every time they undertake an activity. For example, the morphology that increases bite force (i.

View Article and Find Full Text PDF

Freshwater salinization is an emerging threat to aquatic ecosystems across the planet, degrading habitats and negatively impacting wild populations. Deicing practices are a leading cause of freshwater salinization, particularly in the snowbelt region of North America where a variety of salts are widely applied to roads and other surfaces to melt snow and ice. Seasonal pools near roads are considered the most severely impacted aquatic habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!