MicroRNAs (miRNAs) are short RNAs that post-transcriptionally regulate gene expression by binding to specific sites in mRNAs. Site recognition is primarily mediated by the seed region (nucleotides g2-g8 in the miRNA), but pairing beyond the seed (3'-pairing) is important for some miRNA:target interactions. Here, we use SHAPE, luciferase reporter assays and transcriptomics analyses to study the combined effect of 3'-pairing and secondary structures in mRNAs on repression efficiency. Using the interaction between miR-34a and its SIRT1 binding site as a model, we provide structural and functional evidence that 3'-pairing can compensate for low seed-binding site accessibility, enabling repression of sites that would otherwise be ineffective. We show that miRNA 3'-pairing regions can productively base-pair with nucleotides far upstream of the seed-binding site and that both hairpins and unstructured bulges within the target site are tolerated. We use SHAPE to show that sequences that overcome inaccessible seed-binding sites by strong 3'-pairing adopt the predicted structures and corroborate the model using luciferase assays and high-throughput modelling of 8177 3'-UTR targets for six miRNAs. Finally, we demonstrate that PHB2, a target of miR-141, is an inaccessible target rescued by efficient 3'-pairing. We propose that these results could refine predictions of effective target sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639062 | PMC |
http://dx.doi.org/10.1093/nar/gkad795 | DOI Listing |
Nucleic Acids Res
November 2023
Department of Cell and Molecular Biology, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177Stockholm, Sweden.
MicroRNAs (miRNAs) are short RNAs that post-transcriptionally regulate gene expression by binding to specific sites in mRNAs. Site recognition is primarily mediated by the seed region (nucleotides g2-g8 in the miRNA), but pairing beyond the seed (3'-pairing) is important for some miRNA:target interactions. Here, we use SHAPE, luciferase reporter assays and transcriptomics analyses to study the combined effect of 3'-pairing and secondary structures in mRNAs on repression efficiency.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2002
Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
RecA that catalyses efficient homology search and exchange of DNA bases has to effect major transitions in the structure as well as the dynamics of bases within RecA-DNA filament. RecA induces slippage of paired strands in poly(dA)-poly(dT) duplex using the energy of ATP hydrolysis. Here, we have adopted the targeted ligation assay and quantified the strand slippage within a short central cassette of (dA)(4)-(dT)(4) duplex.
View Article and Find Full Text PDFJ Mol Biol
October 1997
Department of Molecular Biology, Odense University, Denmark.
The hok/sok locus of plasmid R1 mediates plasmid stabilization by killing of plasmid-free cells. The locus specifies two RNAs, hok mRNA and Sok antisense RNA. The post-segregational killing mediated by hok/sok is governed by a complicated control mechanism that involves both post-transcriptional inhibition of translation by Sok-RNA and activation of hok translation by mRNA 3' processing.
View Article and Find Full Text PDFPrevious studies of phenylalanyl-tRNA synthetase expression in Escherichia coli strongly suggested that the pheS, T operon was regulated by a phenylalanine-mediated attenuation mechanism. To investigate the functions of the different segments composing the pheS, T attenuator site, a series of insertion, deletion and point mutations in the pheS, T leader region have been constructed in vitro on a recombinant M13 phage. The effects of these alterations on the regulation of the operon were measured after transferring each mutation onto a lambda phage carrying a pheS, T-lacZ fusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!