The chemical complexity of biological tissues creates challenges in the analysis of lipids via imaging mass spectrometry. The presence of isobaric and isomeric compounds introduces chemical noise that makes it difficult to unambiguously identify and accurately map the spatial distributions of these compounds. Electron-induced dissociation (EID) has previously been shown to profile phosphatidylcholine (PCs) -isomers directly from rat brain tissue in matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry. However, the acquisition of true pixel-by-pixel images, as opposed to regional profiling measurements, using EID is difficult due to low fragmentation efficiency and precursor ion signal dilution into multiple fragment ion channels, resulting in low sensitivity. In this work, we have developed a sequential collision-induced dissociation (CID)/EID method to visualize the distribution of -isomers in MALDI imaging mass spectrometry experiments. Briefly, CID is performed on sodium-adducted PCs, which results in facile loss of the phosphocholine headgroup. This ion is then subjected to an EID analysis. Since the lipid headgroup is removed prior to EID, a major fragmentation pathway common to EID ion activation is eliminated, resulting in a more sensitive analysis. This sequential CID/EID workflow generates -specific fragment ions allowing for the assignment of the -positions. Carbon-carbon double-bond (C═C) positions are also localized along the fatty acyl tails by the presence of a 2 Da shift pattern in the fragment ions arising from carbon-carbon bond cleavages. Moreover, the integration of the CID/EID method into MALDI imaging mass spectrometry enables the mapping of the absolute and relative distribution of -isomers at every pixel. The localized relative abundances of -isomers vary throughout brain substructures and likely reflect different biological functions and metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639000PMC
http://dx.doi.org/10.1021/acs.analchem.3c03077DOI Listing

Publication Analysis

Top Keywords

imaging mass
16
mass spectrometry
16
maldi imaging
12
rat brain
8
brain tissue
8
sequential collision-induced
8
cid/eid method
8
distribution -isomers
8
fragment ions
8
imaging
5

Similar Publications

Anorexia nervosa (AN) is a severe psychiatric disorder, characterized by restricted eating, fear to gain weight, and a distorted body image. Mu-opioid receptor (MOR) functions as a part of complex opioid system and supports both homeostatic and hedonic control of eating behavior. Thirteen patients with AN and thirteen healthy controls (HC) were included in this study.

View Article and Find Full Text PDF

Endometriosis is a chronic disease characterised by the presence of endometrial tissue outside the uterine cavity, affecting 5-15% of women, especially those of reproductive age. The disease may manifest itself as dysmenorrhoea, dyspareunia, sterility and chronic pelvic pain, among other symptoms. Although it is not malignant, it shares some characteristics with cancer and can lead to epithelial ovarian carcinoma.

View Article and Find Full Text PDF

Background: Chemical derivatization is a common technique in liquid chromatography-mass spectrometry (LC-MS) metabolomics used to improve the ionizability and chromatographic properties of metabolites in complex biological samples. This process facilitates better detection and separation of a wide array of compounds. The reagent 2-(4-boronobenzyl) isoquinolin-2-ium bromide (BBII), developed as a glucose labeling reagent for matrix-assisted laser desorption/ionization MS, enhances ionization for glucose and other hydroxyl metabolites.

View Article and Find Full Text PDF

Seminal vesicle schwannoma with chronic hemorrhage.

Neurosciences (Riyadh)

January 2025

From the Department of Radiology (Li, Zhang), Department of Pathology (Yang), First People's Hospital of Yongkang City, Yongkang City, and from Jinhua Central Hospital (Ying), Jinhua City, Zhejiang Province, China.

Schwannomas are benign tumors originating from Schwann cells, with seminal vesicle schwannomas being exceedingly rare. This report describes a 54-year-old man with an incidental discovery of a right-sided seminal vesicle mass during a routine ultrasound examination. Further imaging, including MRI and contrast-enhanced CT scans, revealed a well-defined, encapsulated mass with heterogeneous signal intensity suggestive of schwannoma.

View Article and Find Full Text PDF

Investigating the Molecular Mechanisms of Jiangu Decoction in Treating Type 2 Diabetic Osteoporosis.

J Ethnopharmacol

January 2025

Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China; Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China. Electronic address:

Ethnopharmacological Relevance: Type 2 diabetic osteoporosis (T2DOP) is a metabolic bone disease characterized by impaired bone structure and decreased bone strength in diabetic patients. Jiangu Decoction (JGD), a traditional Chinese poly-herbal formulation, has shown efficacy in mitigating osteoporosis (OP) and fractures caused by osteoporosis in diabetic patients in clinical trials. In addition, JGD has been proven to promote the proliferation of osteoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!