Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are polyfluoroalkyl substances (PFAS) used as surface coatings in manufacturing. Exposure to PFAS was shown to be correlated with infertility, low birth weight, and delayed aspects of pubertal development in mammals. Despite many correlational studies, there have been few direct investigations examining the link between PFAS exposure and early animal development. The aim of this study was to (1) examine the effects of PFOA on development and reproduction using the roundworm , a model with a high predictive value for human reproductive toxicity and (2) compare observations to exposure to PFOS. PFAS exposure did not markedly alter egg hatching but delayed population growth, in part due to slower larval development. PFAS-exposed worms took longer to progress through larval stages to reach reproductive maturity, and this was not attributed to PFOA-induced toxicity to their food. Our results provide a robust benchmark for testing developmental and reproductive toxicity for other PFAS and PFAS-alternatives which continue to be used in manufacturing and released into the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287394.2023.2265419DOI Listing

Publication Analysis

Top Keywords

perfluorooctanoic acid
8
perfluorooctanesulfonic acid
8
larval development
8
population growth
8
alter egg
8
egg hatching
8
pfas exposure
8
reproductive toxicity
8
development
5
pfas
5

Similar Publications

Construction of the cancer patients' database based on the US National Health and Nutrition Examination Survey (NHANES) datasets for cancer epidemiology research.

BMC Med Res Methodol

January 2025

Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1, Singil-ro, Yeongdeungpo-gu, Seoul, 07441, South Korea.

Background: The US National Health and Nutrition Examination Survey (NHANES) dataset does not include a specific question or laboratory test to confirm a history of cancer diagnosis. However, if straightforward variables for cancer history are introduced, US NHANES could be effectively utilized in future cancer epidemiology studies. To address this gap, the authors developed a cancer patient database from the US NHANES datasets by employing multiple R programming codes.

View Article and Find Full Text PDF

Perfluoroalkyl chemicals are one of the most stable substances in industry and have become ubiquitous contaminants owing to their persistence in the environment. This study enrolled 1,953 participants aged ≥40 years old using data from the National Health and Nutrition Examination Survey (NHANES). We selected four perfluoroalkyl chemicals with a detection frequency of more than 80%, including perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS).

View Article and Find Full Text PDF

Per- and Polyfluoroalkyl Substances (PFAS) Exposure in the U.S. Population: NHANES 1999-March 2020.

Environ Res

January 2025

Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA. Electronic address:

Per- and polyfluoroalkyl substances (PFAS), also known as "forever chemicals" because of their persistence in the environment, have been used in many commercial applications since the 1940s. Of late, the detection of PFAS in drinking water throughout the United States has raised public and scientific concerns. To understand PFAS exposure trends in the general U.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) removal has gained significant attention due to its environmental stability and potential toxicity. This study aims to synthesize a chitosan-modified magnetic biochar (CS_MBC) for efficient PFOA removal from aqueous solutions. Various CS loading ratios (0.

View Article and Find Full Text PDF

The impact of anions on electrooxidation of perfluoroalkyl acids by porous Magnéli phase titanium suboxide anodes.

PLoS One

January 2025

Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.

Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!