In this paper a novel low-cost multi-spectral optical fluorometer is presented and evaluated. The device uses a range of LEDs in the blue and violet regions of the electromagnetic spectrum and a mini-spectrometer to detect the emitted fluorescence in the UV to IR spectrum region. Custom built electronics and software were designed to control the system and the components were housed in bespoke 3D printed parts. A number of known fluorophores were tested to determine the capabilities of the fluorometer. Application of the device is demonstrated for the detection of chlorophyll a (Chl ) from laboratory grown algae and from environmental samples while analytical performance is established using both and extracted Chl fluorescence and by comparison with a benchtop fluorometer.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay00991bDOI Listing

Publication Analysis

Top Keywords

novel low-cost
8
fluorometer application
8
low-cost plug-and-play
4
plug-and-play multi-spectral
4
multi-spectral led
4
led based
4
fluorometer
4
based fluorometer
4
application chlorophyll
4
chlorophyll detection
4

Similar Publications

Background: One in five sebaceous tumour (ST) patients may have Lynch syndrome (LS), a hereditary cancer predisposition. LS patients benefit from cancer surveillance and prevention programmes and immunotherapy. Whilst universal tumour mismatch repair (MMR) deficiency testing is recommended in colorectal and endometrial cancers to screen for LS, there is no consensus screening strategy for ST, leading to low testing rates and inequity of care.

View Article and Find Full Text PDF

Greenhouse Gas Emissions and Decarbonization Potential of Global Fired Clay Brick Production.

Environ Sci Technol

January 2025

Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Fired clay bricks (FCBs) are a dominant building material globally due to their low cost and simplicity of production, especially in low- and middle-income countries. With a projected rising housing demand, commensurate growth in brick demand is anticipated, the production of which could result in significant greenhouse gas (GHG) emissions. Robust models are needed to estimate brick demand and emissions to systematically address decarbonization pathways.

View Article and Find Full Text PDF

Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.

View Article and Find Full Text PDF

Herein, a novel amine-functionalized magnetic resorcinol-formaldehyde with a core-shell structure (FeO@RF/Pr-NH) is prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over FeO@RF composite. Characterization through FT-IR, EDX, PXRD, and TGA confirmed successful surface modification while preserving the crystalline structure of FeO. The VSM analysis demonstrated excellent superparamagnetic properties, and SEM and TEM images revealed spherical particles for the designed nanocatalyst.

View Article and Find Full Text PDF

Real-time deformable structure tracking in 3D ultrasound sequences using deformable convolutional layers.

Comput Biol Med

January 2025

University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Schleswig-Holstein, Germany. Electronic address:

Ultrasound imaging can provide 3D images of soft tissue structures in real-time without harmful radiation. Due to its high level of availability and low-cost characteristics, it is becoming more and more interesting for therapy guidance purposes like in radiotherapy. However, for usage in radiotherapy a robust and real-time image analysis method is required to be able to track the target during the treatment session.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!