Aspergillus oryzae α-l-rhamnosidase: Crystal structure and insight into the substrate specificity.

Proteins

Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, Tsuruoka, Japan.

Published: February 2024

The subsequent biochemical and structural investigations of the purified recombinant α-l-rhamnosidase from Aspergillus oryzae expressed in Pichia pastoris, designated as rAoRhaA, were performed. The specific activity of the rAoRhaA wild-type was higher toward hesperidin and narirutin, where the l-rhamnose residue was α-1,6-linked to β-d-glucoside, than toward neohesperidin and naringin with an α-1,2-linkage to β-d-glucoside. However, no activity was detected toward quercitrin, myricitrin, and epimedin C. rAoRhaA kinetic analysis indicated that K values for neohesperidin, naringin, and rutin were lower compared to those for hesperidin and narirutin. k values for hesperidin and narirutin were higher than those for neohesperidin, naringin, and rutin. High catalytic efficiency (k /K ) toward hesperidin and narirutin was a result of a considerably high k value, while K values for hesperidin and narirutin were higher than those for naringin, neohesperidin, and rutin. The crystal structure of rAoRhaA revealed that the catalytic domain was represented by an (α/α) -barrel with the active site located in a deep cleft and two β-sheet domains were also present in the N- and C-terminal sites of the catalytic domain. Additionally, five asparagine-attached N-acetylglucosamine molecules were observed. The catalytic residues of AoRhaA were suggested to be Asp254 and Glu524, and their catalytic roles were confirmed by mutational studies of D254N and E524Q variants, which lost their activity completely. Notably, three aspartic acids (Asp117, Asp249, and Asp261) located at the catalytic pocket were replaced with asparagine. D117N variant showed reduced activity. D249N and D261N variants activities drastically decreased.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.26608DOI Listing

Publication Analysis

Top Keywords

hesperidin narirutin
20
neohesperidin naringin
12
aspergillus oryzae
8
crystal structure
8
naringin rutin
8
values hesperidin
8
narirutin higher
8
catalytic domain
8
catalytic
6
hesperidin
5

Similar Publications

Flavonoids derived from plants in the citrus family can have an alleviating effect on allergic asthma. The aim of this study was to provide insights into the mechanisms by which these compounds exert their effects on allergic asthma by combining theoretical and practical approaches. Aurantii Fructus Immaturus flavonoids (AFIFs) were obtained by solvent extraction and were determined by high performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

'Chachi' (CRC), recognized for its considerable edible and medicinal significance, is a valuable source of metabolites beneficial to human health. This research investigates the metabolic distinctions and antioxidant properties across four different parts of CRC, using multivariate statistical analysis to interpret metabolomic data and network pharmacology to identify potential antioxidant targets and relevant signaling pathways. The results indicate considerable metabolic differences in different parts of the sample, with 1622 metabolites showing differential expression, including 816 secondary metabolites, primarily consisting of terpenoids (31.

View Article and Find Full Text PDF

Advance glycation end products (AGEs) are the main reason for diabetic complications. Persistent hyperglycemia and non-enzymatic glycation increase the rate of AGEs formation. Natural functional food-based approaches are mainly under investigation these days to discover new treatment options.

View Article and Find Full Text PDF

The medicinal fungus Phellinus Igniarius (P. igniarius) has been demonstrated to possess a variety of pharmacological effects, including anti-oxidant, anti-tumor, blood circulation promotion, anti-diarrheal and sedative properties, etc. In order to gain a deeper understanding of the components in P.

View Article and Find Full Text PDF

A novel, deep eutectic solvent (DES)-assisted sodium cholate (SC)-chiral microemulsion electrokinetic chromatography method is presented for separation of five flavonoid glycoside enantiomers, namely hesperidin, naringin, narirutin, eriocitrin, and neoeriocitrin. Herein, we develop a novel, green DES, whose addition considerably enhances the separation performance through multiple synergistic effects. A series of factors notably affecting chiral separation are systematically optimized: type and concentration of cyclodextrin, DES, and SC, oil phase type, and pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!