Intoduction: In veterinary medicine, airway management of cats under general anesthesia is performed with an endotracheal tube (ETT) or supraglottic airway device (SGAD). This study aims to describe the use of computational fluid dynamics (CFD) to assess the velocities, pressures, and resistances of cats with ETT or SGAD.

Methods: A geometrical reconstruction model of the device, trachea, and lobar bronchi was carried out from computed tomography (CT) scans that include the head, neck, and thorax. Twenty CT scans of cats under general anesthesia using ETT ( = 10) and SGAD ( = 10) were modeled and analyzed. An inspiratory flow of 2.4 L/min was imposed in each model and velocity (m/s), general and regional pressures (cmHO) were computed. General resistance (cmHO/L/min) was calculated using differential pressure differences between the device inlet and lobar bronchi. Additionally, regional resistances were calculated at the device's connection with the breathing circuit (region A), at the glottis area for the SGAD, and the area of the ETT exit (bevel) (region B) and the device itself (region C).

Results: Recirculatory flow and high velocities were found at the ETT's bevel and at the glottis level in the SGAD group. The pressure gradient (Δp) was more enhanced in the ETT cases compared with the SGAD cases, where the pressure change was drastic. In region A, the Δp was higher in the ETT group, while in regions B and C, it was higher in the SGAD group. The general resistance was not statistically significant between groups ( = 0.48). Higher resistances were found at the region A ( = <0.001) in the ETT group. In contrast, the resistance was higher in the SGAD cases at the region B ( = 0.001).

Discussion: Overall, the provided CT-based CFD analysis demonstrated regional changes in airway pressure and resistance between ETT and SGAD during anesthetic flow conditions. Correct selection of the airway device size is recommended to avoid upper airway obstruction or changes in flow parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561303PMC
http://dx.doi.org/10.3389/fvets.2023.1183223DOI Listing

Publication Analysis

Top Keywords

computational fluid
8
fluid dynamics
8
endotracheal tube
8
supraglottic airway
8
airway device
8
cats general
8
general anesthesia
8
lobar bronchi
8
general resistance
8
sgad group
8

Similar Publications

Analysis of the hemodynamic impact of coronary plaque morphology in mild coronary artery stenosis.

Comput Methods Programs Biomed

January 2025

Department of Mechanics & Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park / Yibin Istitute of Industrial Technology, Yibin 644000, China. Electronic address:

Objectives: As is well known, plaque morphology plays an important role in the hemodynamics of stenotic coronary arteries, thus their clinic outcomes. However, so far, there has been no research on how the cross-sectional shape of a stenotic lumen affects its hemodynamics. Therefore, this study aims to explore the impact of plaque cross-sectional shape on coronary hemodynamics under mild or moderate stenosis conditions (diameter stenosis degree ≤50 %).

View Article and Find Full Text PDF

The main objective of this prospective, multicenter study (REVEAL-CP) was to test children with cerebral palsy-like signs and symptoms for raised 3--methyldopa (3-OMD) blood levels, a biomarker for aromatic L-amino acid decarboxylase deficiency (AADCd). A secondary objective was to characterize the molecular basis for the defective aromatic L-amino acid decarboxylase (AADC) gene product. Patients were identified in pediatric secondary and tertiary care hospitals through database searches and personal communication.

View Article and Find Full Text PDF

Cerebral Microbleeds and Amyloid Pathology Estimates From the Amyloid Biomarker Study.

JAMA Netw Open

January 2025

Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.

Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.

Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.

Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).

View Article and Find Full Text PDF

Aim: Successful deep brain stimulation (DBS) requires precise electrode placement. However, brain shift from loss of cerebrospinal fluid or pneumocephalus still affects aim accuracy. Multidetector computed tomography (MDCT) provides absolute spatial sensitivity, and intraoperative cone-beam computed tomography (iCBCT) has become increasingly used in DBS procedures.

View Article and Find Full Text PDF

Gaseous Synergistic Self-Assembly and Arraying to Develop Bio-Organic Photocapacitors for Neural Photostimulation.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.

Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!