Optical emission spectroscopic techniques, such as laser-induced breakdown spectroscopy (LIBS), require an optimal state of plasma for accurate quantitative elemental analysis. Three fundamental assumptions must be satisfied in order for analytical results to be accurate: local thermodynamic equilibrium (LTE), optically thin plasma, and stoichiometric ablation. But real-life plasma often fails to satisfy these conditions, especially the optical thinness of plasma, resulting in the reabsorption of emitted radiation called self-absorption. To study the self-absorption effect, we simulated optically thick emission spectrum at typical laser-produced plasma conditions. The simulation of the spectrum involves four stages, including the estimation of the ratio of the number density of various ionisation states in the plasma using the Saha-Boltzmann equation, the peak intensity of a spectral line using the Boltzmann equation, the full-width half maxima of each spectral line using the Stark broadening method, and the generation of full spectra by providing a Lorentzian profile for each spectral line. Then self-absorption is applied to the simulated spectrum. We investigated the dependence of the self-absorption coefficient on the plasma temperature, optical path length, and element concentration in the sample. Self-absorption decreases with increased plasma temperature, whereas it increases with increasing optical path length and analyte concentration. We also investigated the role of self-absorption in quantitative analysis by calibration-free LIBS with and without resonance lines of the binary alloy (Mg 50% & Ca 50%). We observed a drastic reduction in error from 27% to 2% in the composition estimation when excluding resonance lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561633PMC
http://dx.doi.org/10.1039/d3ra06226kDOI Listing

Publication Analysis

Top Keywords

breakdown spectroscopy
8
plasma
8
plasma temperature
8
optical path
8
path length
8
resonance lines
8
self-absorption
7
numerical procedure
4
procedure understanding
4
understanding self-absorption
4

Similar Publications

Electrochemical capacitance-based aptasensor for HER2 detection.

Biomed Microdevices

January 2025

Department of Physics, Faculty of Philosophy, Science and Letter, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.

The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) protein is specifically related to tumor cell proliferation in breast cancers. Its presence in biological serum samples indicates presence or progression of cancer, becoming a promise biomarker. However, their detection needs a simple and high accuracy platform.

View Article and Find Full Text PDF

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.

View Article and Find Full Text PDF

We report the reversible redox-controlled DNA condensation using a simple dicationic diphenylalanine derivative which contains a disulfide unit as linker. Despite the conventional belief that DNA condensing agents require a charge of +3 or higher, this dicationic molecule functions below its critical aggregation concentration, representing a non-canonical DNA condensing agent. The interaction with DNA of the studied compound combines electrostatic effects with hydrophobic/stacking interactions provided with the diphenylalanine moiety.

View Article and Find Full Text PDF

We have recently demonstrated a novel anaerobic NADH-dependent haem breakdown reaction, which is carried out by a range of haemoproteins. The Yersinia enterocolitica protein, HemS, is the focus of further research presented in the current paper. Using conventional experimental methods, bioinformatics, and energy landscape theory (ELT), we provide new insight into the mechanism of the novel breakdown process.

View Article and Find Full Text PDF

Introduction: In the rapidly advancing field of 'omics research, there is an increasing demand for sophisticated bioinformatic tools to enable efficient and consistent data analysis. As biological datasets, particularly metabolomics, become larger and more complex, innovative strategies are essential for deciphering the intricate molecular and cellular networks.

Methods: We introduce a pioneering analytical approach that combines Principal Component Analysis (PCA) with Graphical Lasso (GLASSO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!