The soil fungal community plays an important role in forest ecosystems and is crucially influenced by forest secondary succession. However, the driving factors of fungal community and function during temperate forest succession and their potential impact on succession processes remain poorly understood. In this study, we investigated the dynamics of the soil fungal community in three temperate forest secondary successional stages (shrublands, coniferous forests, and deciduous broad-leaved forests) using high-throughput DNA sequencing coupled with functional prediction via the FUNGuild database. We found that fungal community richness, α-diversity, and evenness decreased significantly during the succession process. Soil available phosphorus and nitrate nitrogen decreased significantly after initial succession occurred, and redundancy analysis showed that both were significant predictors of soil fungal community structure. Among functional groups, fungal saprotrophs and pathotrophs represented by plant pathogens were significantly enriched in the early-successional stage, while fungal symbiotrophs represented by ectomycorrhiza were significantly increased in the late-successional stage. The abundance of both saprotroph and pathotroph fungal guilds was positively correlated with soil nitrate nitrogen and available phosphorus content. Ectomycorrhizal fungi were negatively correlated with nitrate nitrogen and available phosphorus content and positively correlated with ammonium nitrogen content. These results indicate that the dynamics of fungal community and function reflected the changes in nitrogen and phosphorus availability caused by the secondary succession in temperate forests. The fungal plant pathogen accumulated in the early-successional stage and ectomycorrhizal fungi accumulated in the late-successional stage may have a potential role in promoting forest succession. These findings contribute to a better understanding of the response of soil fungal communities to secondary forest succession and highlight the importance of fungal communities during the successional process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560873PMC
http://dx.doi.org/10.1002/ece3.10593DOI Listing

Publication Analysis

Top Keywords

fungal community
24
soil fungal
20
nitrogen phosphorus
16
fungal
13
secondary succession
12
fungal communities
12
forest succession
12
nitrate nitrogen
12
succession
9
changes nitrogen
8

Similar Publications

Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.

View Article and Find Full Text PDF

Agroforestry systems are multifunctional land-use systems that promote soil life. Despite their large potential spatio-temporal complexity, the majority of studies that investigated soil organisms in temperate cropland agroforestry systems focused on rather non-complex systems. Here, we investigated the topsoil and subsoil microbiome of two complex and innovative alley cropping systems: an agrosilvopastoral system combining poplar trees, crops, and livestock and a syntropic agroforestry system combining 35 tree and shrub species with forage crops.

View Article and Find Full Text PDF

Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.

View Article and Find Full Text PDF

Fungal influence: The role of the gut mycobiome in women's health.

Cell Host Microbe

January 2025

State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:

In this issue of Cell Host & Microbe, Wu et al. identified enriched gut Aspergillus tubingensis in patients with polycystic ovary syndrome (PCOS). In mice, this fungus induced a PCOS-like phenotype by inhibiting interleukin (IL)-22 secretion from ILC3s via the AT-C1-AhR axis.

View Article and Find Full Text PDF

Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!