The association between REST reduction and the development of neuroendocrine prostate cancer (NEPC), a novel drug-resistant and lethal variant of castration-resistant prostate cancer (CRPC), is well established. To better understand the mechanisms underlying this process, we aimed to identify REST-repressed long noncoding RNAs (lncRNAs) that promote neuroendocrine differentiation (NED), thus facilitating targeted therapy-induced resistance. In this study, we used data from REST knockdown RNA sequencing combined with siRNA screening to determine that LINC01801 was upregulated and played a crucial role in NED in prostate cancer (PCa). Using The Cancer Genome Atlas (TCGA) prostate adenocarcinoma database and CRPC samples collected in our laboratory, we demonstrated that LINC01801 expression is upregulated in NEPC. Functional experiments revealed that overexpression of LINC01801 had a slight stimulatory effect on the NED of LNCaP cells, while downregulation of LINC01801 significantly inhibited the induction of NED. Mechanistically, LINC01801 is transcriptionally repressed by REST, and transcriptomic analysis revealed that LINC01801 preferentially affects the autophagy pathway. LINC01801 was found to function as a competing endogenous RNA (ceRNA) to regulate the expression of autophagy-related genes by sponging hsa-miR-6889-3p in prostate cancer cells. In conclusion, our data expand the current knowledge of REST-induced NED and highlight the contribution of the REST-LINC01801-hsa-miR-6889-3p axis to autophagic induction, which may provide promising avenues for therapeutic opportunities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560947 | PMC |
Prostate Cancer
December 2024
Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan.
Prostate cancer is the most common noncutaneous malignancy among men worldwide, including in Sudan, where it represents a significant public health challenge. CD147, a transmembrane glycoprotein implicated in tumor progression, invasion, and metastasis, has shown potential as a prognostic biomarker in various cancers. This retrospective case-control study aimed to evaluate CD147 expression in prostate adenocarcinoma among Sudanese men and its association with tumor grade.
View Article and Find Full Text PDFJ West Afr Coll Surg
August 2024
Division of Urology, Department of Surgery, College of Health Sciences, University of Abuja, Abuja, Nigeria.
Background: Prostate cancer (PCa) was the most common noncutaneous cancer among Nigerian men in 2020. Despite this high incidence, documented rates may be an underestimation.
Objectives: This study aimed to determine the hospital incidence rate, trends, and characterise the clinicopathologic features, and treatment outcomes of patients with PCa in our institution.
Oncol Res
December 2024
Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, China.
Background: Transmembrane emp24 trafficking protein 3 (TMED3) is associated with the development of several tumors; however, whether TMED3 regulates the progression of prostate cancer remains unclear.
Materials And Methods: Short hairpin RNA was performed to repress TMED3 in prostate cancer cells (DU145 cells) and in a prostate cancer mice model to determine its function in prostate cancer and .
Results: In the present study, we found that TMED3 was highly expressed in prostate cancer cells.
Front Oncol
December 2024
Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, China.
Background: Prostate cancer (PCa) ranks as the second leading cause of cancer-related mortality among men. Long non-coding RNAs (lncRNAs) are known to play a regulatory role in the development of various human cancers. LncRNA MAFG-divergent transcript (MAFG-DT) was reported to play a crucial role in tumor progression of multiple human cancers, such as pancreatic cancer, colorectal cancer, bladder cancer, and gastric cancer.
View Article and Find Full Text PDFBioinform Adv
November 2024
Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku 20500, Finland.
Motivation: NMR-based metabolomics is a field driven by technological advancements, necessitating the use of advanced preprocessing tools. Despite this need, there is a remarkable scarcity of comprehensive and user-friendly preprocessing tools in Python. To bridge this gap, we have developed Protomix-a Python package designed for metabolomics research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!