Traditionally, there is a widely held belief that drug dispersion after intrathecal (IT) delivery is confined locally near the injection site. We posit that high-volume infusions can overcome this perceived limitation of IT administration. To test our hypothesis, subject-specific deformable phantom models of the human central nervous system were manufactured so that tracer infusion could be realistically replicated over the entire physiological range of pulsating cerebrospinal fluid (CSF) amplitudes and frequencies. The distribution of IT injected tracers was studied systematically with high-speed optical methods to determine its dependence on injection parameters (infusion volume, flow rate, and catheter configurations) and natural CSF oscillations in a deformable model of the central nervous system (CNS). Optical imaging analysis of high-volume infusion experiments showed that tracers spread quickly throughout the spinal subarachnoid space, reaching the cervical region in less than 10 min. The experimentally observed biodispersion is much slower than suggested by the Taylor-Aris dispersion theory. Our experiments indicate that micro-mixing patterns induced by oscillatory CSF flow around microanatomical features such as nerve roots significantly accelerate solute transport. Strong micro-mixing effects due to anatomical features in the spinal subarachnoid space were found to be active in intrathecal drug administration but were not considered in prior dispersion theories. Their omission explains why prior models developed in the engineering community are poor predictors for IT delivery. Our experiments support the feasibility of targeting large sections of the neuroaxis or brain utilizing high-volume IT injection protocols. The experimental tracer dispersion profiles acquired with an anatomically accurate, deformable, and closed human CNS analog informed a new predictive model of tracer dispersion as a function of physiological CSF pulsations and adjustable infusion parameters. The ability to predict spatiotemporal dispersion patterns is an essential prerequisite for exploring new indications of IT drug delivery that targets specific regions in the CNS or the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561273 | PMC |
http://dx.doi.org/10.3389/fphys.2023.1244016 | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China. Electronic address:
The potential release of radionuclides threatens marine ecosystems with the rapid development of coastal nuclear power plants in China. However, transport, dispersion, and final budget of anthropogenic radionuclides remain unclear, especially in the Bohai and North Yellow Seas, which are semi-enclosed marginal seas with poor water exchange. This study analyzed anthropogenic I concentration (a typical product of nuclear power plant operations) in seawater samples from this area.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China.
A comprehensive scientific analysis of temporal and spatial fluctuations of pollutants during the migration of groundwater is essential for precisely predicting their dispersion patterns and promoting rational regional development planning. In this research paper, a field radial dispersion test was conducted in decentralized drinking water sources downstream of the Fu Tuan River basin in Rizhao City, Shandong Province, China (FRSC). Chloride ion (Cl) solution was utilized as a tracer for the experiment.
View Article and Find Full Text PDFPLoS One
January 2025
DHI Water and Environment Inc, Cambridge, Canada.
The water quality and resources of Lake Ontario's nearshore ecosystem undergo heightened stress, particularly along the northwest shoreline. Hydrodynamic processes linking the distinct nearshore and offshore trophic structures play a crucial role in transporting nutrient-loaded water along and across the shore. Despite the pivotal connection between algae growth and the development of nuisance proportions, the scales over which these processes operate remain poorly understood.
View Article and Find Full Text PDFBrain Sci
December 2024
Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV 89557, USA.
Advancements in neuroimaging, particularly diffusion magnetic resonance imaging (MRI) techniques and molecular imaging with positron emission tomography (PET), have significantly enhanced the early detection of biomarkers in neurodegenerative and neuro-ophthalmic disorders. These include Alzheimer's disease, Parkinson's disease, multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. This review highlights the transformative role of advanced diffusion MRI techniques-Neurite Orientation Dispersion and Density Imaging and Diffusion Kurtosis Imaging-in identifying subtle microstructural changes in the brain and visual pathways that precede clinical symptoms.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
January 2025
ICF Department of Environment and Planning, San Francisco, CA, USA.
The R-LINE model, which was released in 2013 as a stand-alone model for roadway-type applications and was based on a set of newly developed dispersion curves, exhibited favorable model performance in a limited set of evaluations. In 2019, the R-LINE model was incorporated as the RLINE source type in EPA's preferred near-field dispersion model AERMOD. Since its inclusion in AERMOD, the RLINE source type has been tested and compared to other AERMOD source types using multiple data sets and transportation studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!