Reconfiguration, Welding, Reprogramming, and Complex Shape Transformation of An Optical Shape Memory Polymer Network Enabled by Patterned Secondary Crosslinking.

Small

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.

Published: February 2024

Stimuli-triggered generation of complicated 3D shapes from 2D strips or plates without using sophisticated molds is desirable and achieving such 2D-to-3D shape transformation in combination with shape reconfiguration, welding, and reprogramming on a single material is very challenging. Here, a convenient and facile strategy using the solution of a disulfide-containing diamine for patterned secondary crosslinking of an optical shape-memory polymer network is developed to integrate the above performances. The dangling thiolectones attached to the backbones react with the diamine in the solution-deposited region so that the secondary crosslinking may not only weld individual strips into assembled 3D shapes but also suppress the relaxation of the deformed polymer chains to different extents for shape reconfiguration or heating-induced complex 3D deformations. In addition, as the dynamic disulfide bonds can be thermally activated to erase the initial programming information and the excessive thiolectones are available for subsequent patterned crosslinking, the material also allows shape reprogramming. Combining welding with patterning treatment, it is further demonstrated that a gripper can be assembled and photothermally controlled to readily grasp an object.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202306312DOI Listing

Publication Analysis

Top Keywords

secondary crosslinking
12
reconfiguration welding
8
welding reprogramming
8
shape transformation
8
polymer network
8
patterned secondary
8
shape reconfiguration
8
shape
6
reprogramming complex
4
complex shape
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!