Background: Osteoarthritis (OA) is a chronic and degenerative bone and joint disease, and paeoniflorin shows anti-arthritis role in OA. This study planned to investigate the mechanism related to chondroprotective role of paeoniflorin in OA.
Methods: Real-time quantitative PCR and western blotting were performed to measure expression levels of circ-PREX1, microRNA (miR)-140-3p, Wingless-type MMTV integration site family, member 5B (WNT5B), B cell lymphoma (Bcl)-2, and Bcl-2 Associated X Protein (Bax). MTT assay, EdU assay, flow cytometry and enzyme-linked immunosorbent assay evaluated cell viability, proliferation, apoptosis and inflammatory response, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation assay identified the relationship among circ-PREX1, miR-140-3p, and WNT5B.
Results: IL-1β highly induced apoptosis rate, Bax expression and TNF-α product, accompanied with decreased cell viability, cell proliferation and IL-10 secretion, whereas these effects were partially reversed after paeoniflorin pretreatment. Expression of circ-PREX1 was upregulated and miR-140-3p was downregulated in cartilage tissues of patients with knee OA (KOA) and IL-1β-induced human chondrocytes (C28/I2). Circ-PREX1 overexpression and miR-140-3p silencing attenuated the suppressive effect of paeoniflorin in IL-1β-induced C28/I2 cells. Furthermore, miR-140-3p was negatively regulated by circ-PREX1. WNT5B was a downstream target of miR-140-3p and could be modulated by the circ-PREX1/miR-140-3p pathway in IL-1β-induced C28/I2 cells.
Conclusion: Paeoniflorin might protect human chondrocytes from IL-1β-induced inflammatory injury via circ-PREX1-miR-140-3p-WNT5B pathway, suggesting a potential preventative agent and a novel target for the treatment of KOA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566156 | PMC |
http://dx.doi.org/10.1186/s13018-023-04238-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!