Exogenous modification of EL-4 T cell extracellular vesicles with miR-155 induce macrophage into M1-type polarization.

Drug Deliv Transl Res

Shanghai Tenth People's Hospital, Tongji University School of Medicine, 500 Zhen-Nan Road, Shanghai, 200311, China.

Published: April 2024

Extracellular vesicles (EVs) show promising potential to be used as therapeutics, disease biomarkers, and drug delivery vehicles. We aimed to modify EVs with miR-155 to modulate macrophage immune response that can be potentially used against infectious diseases. Primarily, we characterized T cells (EL-4) EVs by several standardized techniques and confirmed that the EVs could be used for experimental approaches. The bioactivities of the isolated EVs were confirmed by the uptake assessment, and the results showed that target cells can successfully uptake EVs. To standardize the loading protocol by electroporation for effective biological functionality, we chose fluorescently labelled miR-155 mimics because of its important roles in the immune regulations to upload them into EVs. The loading procedure showed that the dosage of 1 µg of miRNA mimics can be efficiently loaded to the EVs at 100 V, further confirmed by flow cytometry. The functional assay by incubating these modified EVs (mEVs) with in vitro cultured cells led to an increased abundance of miR-155 and decreased the expressions of its target genes such as TSHZ3, Jarid2, ZFP652, and WWC1. Further evaluation indicated that these mEVs induced M1-type macrophage polarization with increased TNF-α, IL-6, IL-1β, and iNOS expression. The bioavailability analysis revealed that mEVs could be detected in tissues of the livers. Overall, our study demonstrated that EVs can be engineered with miR-155 of interest to modulate the immune response that may have implications against infectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-023-01442-4DOI Listing

Publication Analysis

Top Keywords

evs
10
extracellular vesicles
8
immune response
8
infectious diseases
8
mir-155
5
exogenous modification
4
modification el-4 t
4
el-4 t cell
4
cell extracellular
4
vesicles mir-155
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!