In the design of classification models, irrelevant or noisy features are often generated. In some cases, there may even be negative interactions among features. These weaknesses can degrade the performance of the models. Feature selection is a task that searches for a small subset of relevant features from the original set that generate the most efficient models possible. In addition to improving the efficiency of the models, feature selection confers other advantages, such as greater ease in the generation of the necessary data as well as clearer and more interpretable models. In the case of medical applications, feature selection may help to distinguish which characteristics, habits, and factors have the greatest impact on the onset of diseases. However, feature selection is a complex task due to the large number of possible solutions. In the last few years, methods based on different metaheuristic strategies, mainly evolutionary algorithms, have been proposed. The motivation of this work is to develop a method that outperforms previous methods, with the benefits that this implies especially in the medical field. More precisely, the present study proposes a simple method based on tabu search and multistart techniques. The proposed method was analyzed and compared to other methods by testing their performance on several medical databases. Specifically, eight databases belong to the well-known repository of the University of California in Irvine and one of our own design were used. In these computational tests, the proposed method outperformed other recent methods as gauged by various metrics and classifiers. The analyses were accompanied by statistical tests, the results of which showed that the superiority of our method is significant and therefore strengthened these conclusions. In short, the contribution of this work is the development of a method that, on the one hand, is based on different strategies than those used in recent methods, and on the other hand, improves the performance of these methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564765 | PMC |
http://dx.doi.org/10.1038/s41598-023-44437-4 | DOI Listing |
Insights Imaging
January 2025
Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
Objectives: To develop and validate the performance of CT-based radiomics models for predicting the prognosis of acute pancreatitis.
Methods: All 344 patients (51 ± 15 years, 171 men) in a first episode of acute pancreatitis (AP) were retrospectively enrolled and randomly divided into training (n = 206), validation (n = 69), and test (n = 69) sets with the ratio of 6:2:2. The patients were dichotomized into good and poor prognosis subgroups based on follow-up CT and clinical data.
Abdom Radiol (NY)
January 2025
First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Purpose: HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Vesical Imaging-Reporting and Data System (VI-RADS) score for noninvasive identification of HER2 status in bladder urothelial carcinoma (BUC).
Methods: A total of 197 patients were retrospectively enrolled and randomly divided into a training cohort (n = 145) and a testing cohort (n = 52).
Mol Divers
January 2025
Department of Biotechnology, Deen Dayal, Upadhyay Gorakhpur University, Gorakhpur, India.
Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds.
View Article and Find Full Text PDFEur Radiol
January 2025
Institute of PLA Geriatric Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
Objective: To establish morphological and radiomic models for early prediction of cognitive impairment associated with cerebrovascular disease (CI-CVD) in an elderly cohort based on cerebral magnetic resonance angiography (MRA).
Methods: One-hundred four patients with CI-CVD and 107 control subjects were retrospectively recruited from the 14-year elderly MRA cohort, and 63 subjects were enrolled for external validation. Automated quantitative analysis was applied to analyse the morphological features, including the stenosis score, length, relative length, twisted angle, and maximum deviation of cerebral arteries.
Neuro Oncol
December 2024
Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA.
Cerebrospinal fluid (CSF) has emerged as a valuable liquid biopsy source for glioma biomarker discovery and validation. CSF produced within the ventricles circulates through the subarachnoid space, where the composition of glioma-derived analytes is influenced by the proximity and anatomical location of sampling relative to tumor, in addition to underlying tumor biology. The substantial gradients observed between lumbar and intracranial CSF compartments for tumor-derived analytes underscore the importance of sampling site selection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!