Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Salt is recognized as one of the most major factors that limits soybean yield in acidic soils. Soil enzyme activity and bacterial community have a critical function in improving the tolerance to soybean. Our aim was to assess the activities of soil enzyme, the structure of bacteria and their potential functions for salt resistance between Salt-tolerant (Salt-T) and -sensitive (Salt-S) soybean genotypes when subject to salt stress. Plant biomass, soil physicochemical properties, soil catalase, urease, sucrase, amylase, and acid phosphatase activities, and rhizosphere microbial characteristics were investigated in Salt-T and Salt-S soybean genotypes under salt stress with a pot experiment. Salt stress significantly decreased the soil enzyme activities and changed the rhizosphere microbial structure in a genotype-dependent manner. In addition, 46 ASVs which were enriched in the Salt-T geotype under the salt stress, such as ASV19 (Alicyclobacillus), ASV132 (Tumebacillus), ASV1760 (Mycobacterium) and ASV1357 (Bacillus), which may enhance the tolerance to soybean under salt stress. Moreover, the network structure of Salt-T soybean was simplified by salt stress, which may result in soil bacterial communities being susceptible to external factors. Salt stress altered the strength of soil enzyme activities and the assembly of microbial structure in Salt-T and Salt-S soybean genotypes. Na, NO-N, NH-N and Olsen-P were the most important driving factors in the structure of bacterial community in both genotypes. Salt-T genotypes enriched several microorganisms that contributed to enhance salt tolerance in soybeans, such as Alicyclobacillus, Tumebacillus, and Bacillus. Nevertheless, the simplified network structure of salt-T genotype due to salt stress may render its bacterial community structure unstable and susceptible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564926 | PMC |
http://dx.doi.org/10.1038/s41598-023-44266-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!