A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phytocompound screening, antioxidant activity and molecular docking studies of pomegranate seed: a preventive approach for SARS-CoV-2 pathogenesis. | LitMetric

A global hazard to public health has been generated by the coronavirus infection 2019 (COVID-19), which is spreading quickly. Pomegranate is a strong source of antioxidants and has demonstrated a number of pharmacological characteristics. This work was aimed to analyze the phytochemicals present in ethanolic pomegranate seed extract (PSE) and their in vitro antioxidant potential and further in-silico evaluation for antiviral potential against crystal structure of two nucleocapsid proteins i.e., N-terminal RNA binding domain (NRBD) and C-terminal Domain (CTD) of SARS-CoV-2. The bioactive components from ethanolic extract of PSE were assessed by gas chromatography-mass spectroscopy (GC-MS). Free radical scavenging activity of PSE was determined using DPPH dye. Molecular docking was executed through the Glide module of Maestro software. Lipinski's 5 rule was applied for drug-likeness characteristics using cheminformatics Molinspiration software while OSIRIS Data Warrior V5.5.0 was used to predict possible toxicological characteristics of components. Thirty-two phytocomponents was detected in PSE by GC-MS technique. Free radical scavenging assay revealed the high antioxidant capacity of PSE. Docking analysis showed that twenty phytocomponents from PSE exhibited good binding affinity (Docking score ≥ - 1.0 kcal/mol) towards NRBD and CTD nucleocapsid protein. This result increases the possibility that the top 20 hits could prevent the spread of SARS-CoV-2 by concentrating on both nucleocapsid proteins. Moreover, molecular dynamics (MD) simulation using GROMACS was used to check their binding efficacy and internal dynamics of top complexes with the lowest docking scores. The metrics root mean square deviation (RMSD), root mean square fluctuation (RMSF), intermolecular hydrogen bonding (H-bonds) and radius of gyration (Rg) revealed that the lead phytochemicals form an energetically stable complex with the target protein. Majority of the phytoconstituents exhibited drug-likeness with non-tumorigenic properties. Thus, the PSE phytoconstituents could be useful source of drug or nutraceutical development in SARS-CoV-2 pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564957PMC
http://dx.doi.org/10.1038/s41598-023-43573-1DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
pomegranate seed
8
sars-cov-2 pathogenesis
8
extract pse
8
nucleocapsid proteins
8
free radical
8
radical scavenging
8
root square
8
pse
7
docking
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!