Global eradication of poliovirus remains elusive, and it is critical to develop next generation vaccines and antivirals. In support of this goal, we map the epitope of human monoclonal antibody 9H2 which is able to neutralize the three serotypes of poliovirus. Using cryo-EM we solve the near-atomic structures of 9H2 fragments (Fab) bound to capsids of poliovirus serotypes 1, 2, and 3. The Fab-virus complexes show that Fab interacts with the same binding mode for each serotype and at the same angle of interaction relative to the capsid surface. For each of the Fab-virus complexes, we find that the binding site overlaps with the poliovirus receptor (PVR) binding site and maps across and into a depression in the capsid called the canyon. No conformational changes to the capsid are induced by Fab binding for any complex. Competition binding experiments between 9H2 and PVR reveal that 9H2 impedes receptor binding. Thus, 9H2 outcompetes the receptor to neutralize poliovirus. The ability to neutralize all three serotypes, coupled with the critical importance of the conserved receptor binding site make 9H2 an attractive antiviral candidate for future development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564760PMC
http://dx.doi.org/10.1038/s41467-023-41052-9DOI Listing

Publication Analysis

Top Keywords

neutralize three
12
three serotypes
12
binding site
12
human monoclonal
8
monoclonal antibody
8
fab-virus complexes
8
receptor binding
8
binding
7
poliovirus
6
9h2
6

Similar Publications

Article Synopsis
  • Patients treated with CD20 antibodies face a higher risk of severe COVID-19 infections, even if they test negative in nasal swabs.
  • Bronchoalveolar lavage is crucial for accurate diagnosis of COVID-19 pneumonia in these patients, especially when CT scans show signs of viral pneumonia.
  • CD4 T-cell depletion and low humoral immune responses due to treatments like bendamustine may contribute to ongoing COVID-19 issues, despite the presence of neutralizing antibodies.
View Article and Find Full Text PDF

In many countries worldwide, NO emissions currently decrease as a result of pollution control, while NH emissions stagnate or continue to increase. Little is known about horizontal deposition of NO and NH, the oxidation/neutralization products of these primary pollutants. To close the knowledge gap, we studied atmospheric inputs of NO and NH at two mountain-top sites near the Czech-German-Polish borders during winter.

View Article and Find Full Text PDF

Background: LYB001 is a recombinant protein COVID-19 vaccine displaying a receptor-binding domain (RBD) in a highly immunogenic array on virus-like particles (VLPs). This study assessed the immunogenicity and safety of LYB001 as a booster.

Research Design And Methods: In this randomized, active-controlled, double-blinded, phase 3 trial, participants aged ≥18 years received a booster with LYB001 or ZF2001 (Recombinant COVID-19 Vaccine).

View Article and Find Full Text PDF

Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody.

View Article and Find Full Text PDF

At present, the mechanism difference between tetragonal BiVO (t-BiVO) and monoclinic BiVO (m-BiVO) coupled peroxymonosulfate (PMS) to realize photocatalysis is still unclear. In this study, m-BiVO and t-BiVO were obtained by adjusting the bismuth-vanadium ratio in the precursor solution (Bi:V = 3:1; 1:1; 1:2 and 1:3). The results of photocatalytic experiments showed that both t-BiVO and m-BiVO had certain activation effects on PMS, and the prepared monoclinic B1V2 has the strongest photocatalytic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!