We show that epilithic biofilms are a relevant nitrogen (N) source in a rocky mountain range in Brazil. During different seasons, we quantified nitrate, ammonium, dissolved organic N (DON) and total dissolved N (TDN) leached by a simulated short rain event. We quantified the epilithic autotrophic biomass by taxonomic groups and its correlation with leached N. We hypothesized that leached N would be correlated to heterocystous cyanobacteria biomass since they are more efficient N fixers. We estimated a landscape N supply of 8.5 kg.ha .year considering the mean precipitation in the region. TDN in leachate was mainly composed of DON (83.8% ± 22%), followed by nitrate (12.1% ± 3%) and ammonium (5% ± 5%). The autotrophic epilithic community was mainly composed of non-heterocystous (Gloeocapsopsis) and heterocystous cyanobacteria (Scytonema and Stigonema), except for a site more commonly affected by fire events that showed a dominance of Chlorophyta. Biogeochemical upscaling was facilitated by the fact that N leaching was not different among sites or related to autotrophic epilithic biomass or assemblage composition. In conclusion, the capacity of epilithic biofilms to provide N to surrounding systems is an ecosystem service that underscores the necessity to conserve them and their habitats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.16515 | DOI Listing |
Biofouling
November 2024
Department of Biotechnology, GIET University, Gunupur, Odisha, India.
In this study, a comparison of biofilm formation, extracellular polymeric substances (EPS) production, protein and polysaccharides estimation, and protein profiling through SDS-PAGE, FTIR, GC-MS, ESI-MS, SEM, and AFM analysis were done for EPS from epilithic bacteria BC1 obtained from monumental rock under normal room temperature and heat stressed condition. Heat stress (60 ± 2 °C) that simulates hot monumental rock surfaces during the summer season caused bacteria BC1 to produce more EPS (8.56 g/L), biofilm, protein and polysaccharides, extra SDS-PAGE protein bands of different molecular weight than their control counterpart.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
November 2024
Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
Mycosporine-like amino acids (MAAs) are a unique class of UV-screening bioactive molecules with potent antioxidants and photoprotective properties, synthesized by various species of cyanobacteria in different habitats. The cyanobacterial biofilms play a crucial driver in the development of ecological communities. The current study examined the existence of the photoprotective MAAs in a novel epilithic cyanobacterium Lyngbya sp.
View Article and Find Full Text PDFSci Rep
October 2024
Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
Biol Futur
September 2024
Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary.
Epilithic biofilms are ubiquitous in large river environments and are crucial for biogeochemical processes, but their community structures and functions remain poorly understood. In this paper, the seasonal succession in the morphological structure and the taxonomic composition of an epilithic bacterial biofilm community at a polluted site of the Danube River were followed using electron microscopy, high-throughput 16S rRNA gene amplicon sequencing and multiplex/taxon-specific PCRs. The biofilm samples were collected from the same submerged stone and carried out bimonthly in the littoral zone of the Danube River, downstream of a large urban area.
View Article and Find Full Text PDFMicrob Ecol
June 2024
University of Belgrade-Faculty of Biology, Studentski Trg 16, 11 000, Belgrade, Serbia.
The primary purpose of the study, as part of the planned conservation work, was to uncover all aspects of autochthonous biofilm pertaining to the formation of numerous deterioration symptoms occurring on the limestone Rožanec Mithraeum monument in Slovenia. Using state-of-the-art sequencing technologies combining mycobiome data with observations made via numerous light and spectroscopic (FTIR and Raman) microscopy analyses pointed out to epilithic lichen Gyalecta jenensis and its photobiont, carotenoid-rich Trentepohlia aurea, as the origin of salmon-hued pigmented alterations of limestone surface. Furthermore, the development of the main deterioration symptom on the monument, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!