Outcome of partial agenesis of corpus callosum.

Am J Obstet Gynecol

Fetal-Maternal Medicine Unit, Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium; Department of Development and Regeneration, University Hospital Leuven, Leuven, Belgium. Electronic address:

Published: April 2024

Background: The diagnosis of corpus callosum anomalies by prenatal ultrasound has improved over the last decade because of improved imaging techniques, scanning skills, and the routine implementation of transvaginal neurosonography.

Objective: Our aim was to investigate all cases of incomplete agenesis of the corpus callosum and to report the sonographic characteristics, the associated anomalies, and the perinatal outcomes.

Study Design: We performed a retrospective analysis of cases from January 2007 to December 2017 with corpus callosum anomalies, either referred for a second opinion or derived from the prenatal ultrasound screening program in a single tertiary referral center. Cases with complete agenesis were excluded from the analysis. Standardized investigation included a detailed fetal ultrasound including neurosonogram, fetal karyotyping (standard karyotype or array comparative genomic hybridization) and fetal magnetic resonance imaging. The pregnancy outcome was collected, and pathologic investigation in case of termination of the pregnancy or fetal or neonatal loss was compared with the prenatal findings. The pregnancy and fetal or neonatal outcomes were reported. The neurologic assessment was conducted by a pediatric neurologist using the Bayley Scales of Infant Development-II and the standardized Child Development Inventory when the Bayley investigation was unavailable.

Results: Corpus callosum anomalies were diagnosed in 148 cases during the study period, 62 (41.9%) of which were excluded because of complete agenesis, and 86 fetuses had partial agenesis (58.1%). In 20 cases, partial agenesis (23.2%) was isolated, whereas 66 (76.7%) presented with different malformations among which 29 cases (43.9%) were only central nervous system lesions, 21 cases (31.8%) were non-central nervous system lesions, and 16 cases (24.3%) had a combination of central nervous system and non-central nervous system lesions. The mean gestational age at diagnosis for isolated and non-isolated cases was comparable (24.29 [standard deviation, 5.05] weeks and 24.71 [standard deviation, 5.35] weeks, respectively). Of the 86 pregnancies with partial agenesis, 46 patients opted for termination of the pregnancy. Neurologic follow-up data were available for 35 children. The overall neurologic outcome was normal in 21 of 35 children (60%); 3 of 35 (8.6%) showed mild impairment and 6 of 35 (17.1%) showed moderate impairment. The remaining 5 of 35 (14.3%) had severe impairment. The median duration of follow-up for the isolated form was 45.6 months (range, 36-52 months) and 73.3 months (range, 2-138 months) for the nonisolated form.

Conclusion: Partial corpus callosum agenesis should be accurately investigated by neurosonography and fetal magnetic resonance imaging to describe its morphology and the associated anomalies. Genetic anomalies are frequently present in nonisolated cases. Efforts must be taken to improve ultrasound diagnosis of partial agenesis and to confirm its isolated nature to enhance parental counseling. Although 60% of children with prenatal diagnosis of isolated agenesis have a favorable prognosis later in life, they often have mild to severe disabilities including speech disorders at school age and behavior and motor deficit disorders that can emerge at a later age.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajog.2023.10.007DOI Listing

Publication Analysis

Top Keywords

corpus callosum
24
partial agenesis
20
nervous system
16
callosum anomalies
12
system lesions
12
agenesis
10
cases
10
agenesis corpus
8
prenatal ultrasound
8
associated anomalies
8

Similar Publications

Background: Studies on the impact of white matter hyperintensity (WMH) on function outcome have primarily concentrated on WMH volume, overlooking the potential significance of WMH location. This study aimed to investigate the relationship between WMH location and outcome in patients with their first-ever acute ischemic stroke (AIS).

Methods: Patients who underwent their first AIS between September 2021 and September 2022 were recruited.

View Article and Find Full Text PDF

Background: Age, sex, and APOE genotype are well-established risk factors for late-onset Alzheimer's Disease (LOAD). Previous findings demonstrate that neuroinflammatory profiles of the human midlife female brain closely resemble the human AD brain. Given APOE's role in LOAD pathogenesis, here we investigate the contribution of this risk factor on targeted AD relevant transcriptional pathways.

View Article and Find Full Text PDF

Background: Inflammation plays a pivotal role in driving the development and progression of Alzheimer's disease (AD) in the human brain, offering a promising avenue for therapeutic intervention. However, the initiation phase of inflammation and its potential sex differences remain elusive. In this study, we aim to provide translational validity to our preclinical findings by testing two hypotheses: 1) the inflammatory profile of late-onset AD (LOAD) is initiated and detectable during midlife aging, and 2) sex differences manifest in the brain by midlife.

View Article and Find Full Text PDF

Background: Our studies show that the small non-coding RNA, mir20a-3p, is neuroprotective for stroke in the acute phase and also attenuates long term cognitive decline in middle-aged female rats. Cognitive decline due to vascular diseases, such as stroke, is associated with secondary neurodegeneration in cortex and limbic structures. In this study, we assessed the volume of white matter, ventricles and regional diffusion-weighted MR imaging measures to delineate pathological tissue characteristics from the postmortem brain of stroke rats.

View Article and Find Full Text PDF

Cuprizone (CPZ) is a widely used toxin that induces demyelinating diseases in animal models, producing multiple sclerosis (MS)-like pathology in rodents. CPZ is one of the few toxins that triggers demyelination and subsequent remyelination following the cessation of its application. This study examines the functional consequences of CPZ-induced demyelination and the subsequent recovery of neural communication within the anterior cingulate cortex (ACC), with a particular focus on inter-hemispheric connectivity via the corpus callosum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!