Vegetation Turing patterns play a critical role in the ecological functioning of arid and semi-arid ecosystems. However, the long-range spatial features of these patterns have been neglected compared to short-range features like patch shape and spatial wavelength. Drawing inspiration from hyperuniform structures in material science, we find that the arid and semi-arid vegetation Turing pattern exhibits long-range dispersion similar to hyperuniformity. As the degree of hyperuniformity of the vegetation Turing pattern increases, so does the water-use efficiency of the vegetation. This finding supports previous studies that suggest that Turing patterns represent a spatially optimized self-organization of ecosystems for water acquisition. The degree of hyperuniformity of Turing-type ecosystems exhibits significant critical slowing down near the tipping point, indicating that these ecosystems have non-negligible transient dynamical behavior. Reduced rainfall not only decreases the resilience of the steady state of the ecosystem but also slows down the rate of spatial optimization of water-use efficiency in long transient regimes. We propose that the degree of hyperuniformity indicates the spatial resilience of Turing-type ecosystems after strong, short-term disturbances. Spatially heterogeneous disturbances that reduce hyperuniformity lead to longer recovery times than spatially homogeneous disturbances that maintain hyperuniformity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589663 | PMC |
http://dx.doi.org/10.1073/pnas.2306514120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!