With the rise of social media, the rapid spread of rumors online has resulted in numerous negative effects on society and the economy. The methods for rumor detection have attracted great interest from both academia and industry. Given the widespread effectiveness of contrastive learning, many graph contrastive learning models for rumor detection have been proposed by using the event propagation structure as graph data. However, the existing contrastive models usually treat the propagation structure of other events similar to the anchor events as negative samples. While this design choice allows for discriminative learning, on the other hand, it also inevitably pushes apart semantically similar samples and, thus, degrades model performance. In this article, we propose a novel propagation fusion model called propagation structure fusion model based on node-level contrastive learning (PFNC) for rumor detection based on node-level contrastive learning. PFNC first obtains three augmented propagation structures by masking the text of each node in the propagation structure randomly and perturbing some edges in the propagation structure based on the importance of edges. Then, PFNC applies the node-level contrastive learning method between every two augmented propagation structures to prevent the samples with similar propagation structure from far away. Finally, a convolutional neural network (CNN)-based model is proposed to capture the relevant information that is consistent and supplementary among three augmented propagation structures by regarding the propagation structure of the event as a color picture, three augmented propagation structures as color channels, and each node as a pixel. The experimental results on real datasets show that the PFNC significantly outperforms the state-of-the-art models for rumor detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2023.3319661 | DOI Listing |
Adv Mater
January 2025
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
The chirality of magnons, exhibiting left- and right-handed polarizations analogous to the counterparts of spin-up and spin-down, has emerged as a promising paradigm for information processing. However, the potential of this paradigm is constrained by the controllable excitation and transmission of chiral magnons. Here, the magnon transmission is explored in the GdFeO/NiO/Pt structures.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory for Forest Genetics and Tree Improvement and Propagation in University of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
Plant protease inhibitors are a ubiquitous feature of plant species and exert a substantial influence on plant stress responses. However, the (Kunitz trypsin inhibitor) family responding to abiotic stress has not been fully characterized in . In this study, we conducted a genome-wide study of the family and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements, and response to stress treatment.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650031, China.
Fracture toughness is an important index related to the service safety of marine risers, and weld is an essential component of the steel catenary risers. In this paper, microscopic structure characterization methods such as scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD), as well as mechanical experiments like crack tip opening displacement (CTOD) and nanoindentation, were employed to conduct a detailed study on the influence of the microstructure characteristics of multi-wire submerged arc welded seams of steel catenary riser pipes on CTOD fracture toughness. The influence mechanisms of each microstructure characteristic on fracture toughness were clarified.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
TC17 titanium alloy is widely used in the aviation industry for dual-performance blades, and linear friction welding (LFW) is a key technology for its manufacturing and repair. However, accurate evaluation of the mechanical properties of TC17-LFW joints and research on their joint fracture behavior are still not clear. Therefore, this paper used the finite element numerical simulation method (FEM) to investigate the mechanical behavior of the TC17-LFW joint with a complex micro-structure during the tensile processing, and predicted its mechanical properties and fracture behavior.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
Building on our previous studies, which have demonstrated that homochiral propagating species-(*,*)-[MeGa(-OCH(Me)COR)]-were crucial for the heteroselectivity of [MeGa(-OCH(Me)COMe)] in the ring-opening polymerization (ROP) of racemic lactide (-LA), we have investigated the effect of alkyl groups on the structure and catalytic properties of dialkylgallium alkoxides in the ROP of -LA. Therefore, we have isolated and characterized the -[RGa(-OCH(Me)COMe] (R = Et (), Pr () and -[RGa(-OCH(Me)CHN] (R = Et (), Pr ()) complexes, to demonstrate the effect of alkyl groups on the chiral recognition induced the formation of the respective homochiaral species-(*,*)-[RGa(-OCH(Me)COMe)] and (*,*)-[RGa(-OCH(Me)CHN]. Moreover, we have investigated the structure of (,)-[RGa(-OCH(Me)COMe] (R = Et ((,)-, R = Pr ((,)-,) and their catalytic activity in the ROP of -LA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!