https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37815912&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 378159122024030820240402
2152-52501522024Apr01Aging and diseaseAging DisMitochondria: A Potential Rejuvenation Tool against Aging.503516503-51610.14336/AD.2023.0712Aging is a complex physiological process encompassing both physical and cognitive decline over time. This intricate process is governed by a multitude of hallmarks and pathways, which collectively contribute to the emergence of numerous age-related diseases. In response to the remarkable increase in human life expectancy, there has been a substantial rise in research focusing on the development of anti-aging therapies and pharmacological interventions. Mitochondrial dysfunction, a critical factor in the aging process, significantly impacts overall cellular health. In this extensive review, we will explore the contemporary landscape of anti-aging strategies, placing particular emphasis on the promising potential of mitotherapy as a ground-breaking approach to counteract the aging process. Moreover, we will investigate the successful application of mitochondrial transplantation in both animal models and clinical trials, emphasizing its translational potential. Finally, we will discuss the inherent challenges and future possibilities of mitotherapy within the realm of aging research and intervention.PhuaQian HuaQHInstitute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.Department of Biological Sciences, National University of Singapore, Singapore.NgShi YanSYInstitute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.National University of Singapore, Yong Loo Lin School of Medicine (Department of Physiology), Singapore.National Neuroscience Institute, Singapore.SohBoon-SengBSInstitute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.Department of Biological Sciences, National University of Singapore, Singapore.engJournal ArticleReview20240401
United StatesAging Dis1015405332152-5250IMAnimalsHumansRejuvenationphysiologyAgingphysiologyMitochondriametabolismProteomics Conflict of interest . None declared.
20235262023712202438643202310101842202310101233202441epublish37815912PMC1091755110.14336/AD.2023.0712AD.2023.0712Jaul E, Barron J (2017). Age-Related Diseases and Clinical and Public Health Implications for the 85 Years Old and Over Population. Front Public Health, 5:335.PMC573240729312916Janikiewicz J, Szymanski J, Malinska D, Patalas-Krawczyk P, Michalska B, Duszynski J, et al.. (2018). Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell Death Dis, 9:332.PMC583243029491385van der Rijt S, Molenaars M, McIntyre RL, Janssens GE, Houtkooper RH (2020). Integrating the Hallmarks of Aging Throughout the Tree of Life: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol, 8:594416.PMC772620333324647Singh A, Faccenda D, Campanella M (2021). Pharmacological advances in mitochondrial therapy. EBioMedicine, 65:103244.PMC792082633647769Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV (2014). Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int, 2014:238463.PMC400383224818134Markin AM, Khotina VA, Zabudskaya XG, Bogatyreva AI, Starodubova AV, Ivanova E, et al.. (2021). Disturbance of Mitochondrial Dynamics and Mitochondrial Therapies in Atherosclerosis. Life (Basel), 11.PMC792463233672784Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol, 11:298-300.13332224Bratic A, Larsson NG (2013). The role of mitochondria in aging. J Clin Invest, 123:951-957.PMC358212723454757Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013). The hallmarks of aging. Cell, 153:1194-1217.PMC383617423746838Pansarasa O, Bertorelli L, Vecchiet J, Felzani G, Marzatico F (1999). Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic Biol Med, 27:617-622.10490283Ji LL, Dillon D, Wu E (1990). Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am J Physiol, 258:R918-923.2331035Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab, 6:280-293.17908557Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Leao C, et al.. (2010). Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci U S A, 107:15123-15128.PMC293056320696905Kauppila TES, Kauppila JHK, Larsson NG (2017). Mammalian Mitochondria and Aging: An Update. Cell Metab, 25:57-71.28094012Greaves LC, Elson JL, Nooteboom M, Grady JP, Taylor GA, Taylor RW, et al.. (2012). Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations. PLoS Genet, 8:e1003082.PMC349940623166522Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, et al.. (2006). Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet, 79:469-480.PMC155955016909385Lee HC, Pang CY, Hsu HS, Wei YH (1994). Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim Biophys Acta, 1226:37-43.8155737Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC (1992). Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res, 275:169-180.1383759Tanhauser SM, Laipis PJ (1995). Multiple deletions are detectable in mitochondrial DNA of aging mice. J Biol Chem, 270:24769-24775.7559594Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, et al.. (1990). Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence. Biochem Biophys Res Commun, 170:1044-1048.2390073Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, et al.. (2006). High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet, 38:515-517.16604074Pinto M, Pickrell AM, Fukui H, Moraes CT (2013). Mitochondrial DNA damage in a mouse model of Alzheimer's disease decreases amyloid beta plaque formation. Neurobiol Aging, 34:2399-2407.PMC402035723702344Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Lezza AM, et al.. (2001). Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med, 30:1223-1233.11368920Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al.. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 429:417-423.15164064Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS, Prolla TA, et al.. (2008). DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet, 40:392-394.18311139Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al.. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science, 309:481-484.16020738Hiona A, Leeuwenburgh C (2008). The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol, 43:24-33.PMC222559717997255Edgar D, Shabalina I, Camara Y, Wredenberg A, Calvaruso MA, Nijtmans L, et al.. (2009). Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab, 10:131-138.19656491Tranah GJ, Katzman SM, Lauterjung K, Yaffe K, Manini TM, Kritchevsky S, et al.. (2018). Mitochondrial DNA m.3243A > G heteroplasmy affects multiple aging phenotypes and risk of mortality. Sci Rep, 8:11887.PMC608289830089816Tranah GJ, Yaffe K, Katzman SM, Lam ET, Pawlikowska L, Kwok PY, et al.. (2015). Mitochondrial DNA Heteroplasmy Associations With Neurosensory and Mobility Function in Elderly Adults. J Gerontol A Biol Sci Med Sci, 70:1418-1424.PMC461238826328603Sharma A, Smith HJ, Yao P, Mair WB (2019). Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep, 20:e48395.PMC689329531667999Yasuda K, Ishii T, Suda H, Akatsuka A, Hartman PS, Goto S, et al.. (2006). Age-related changes of mitochondrial structure and function in Caenorhabditis elegans. Mech Ageing Dev, 127:763-770.16893561Rana A, Oliveira MP, Khamoui AV, Aparicio R, Rera M, Rossiter HB, et al.. (2017). Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun, 8:448.PMC558764628878259Amartuvshin O, Lin CH, Hsu SC, Kao SH, Chen A, Tang WC, et al.. (2020). Aging shifts mitochondrial dynamics toward fission to promote germline stem cell loss. Aging Cell, 19:e13191.PMC743183432666649Guo J, Chiang WC (2022). Mitophagy in aging and longevity. IUBMB Life, 74:296-316.34889504Chen G, Kroemer G, Kepp O (2020). Mitophagy: An Emerging Role in Aging and Age-Associated Diseases. Front Cell Dev Biol, 8:200.PMC711358832274386Todd AM, Staveley BE (2012). Expression of Pink1 with alpha-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan. Genet Mol Res, 11:1497-1502.22653599Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A, 100:4078-4083.PMC15305112642658Palikaras K, Lionaki E, Tavernarakis N (2015). Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature, 521:525-528.25896323Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al.. (2019). Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci, 22:401-412.PMC669362530742114Ruby JR, Dyer RF, Skalko RG (1969). The occurrence of intercellular bridges during oogenesis in the mouse. J Morphol, 127:307-339.15526403Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S (2005). Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res, 96:1039-1041.15879310Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004). Nanotubular highways for intercellular organelle transport. Science, 303:1007-1010.14963329Vignais ML, Caicedo A, Brondello JM, Jorgensen C (2017). Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy. Stem Cells Int, 2017:6917941.PMC547425128659978Sinclair KA, Yerkovich ST, Hopkins PM, Chambers DC (2016). Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther, 7:91.PMC494296527406134Amari L, Germain M (2021). Mitochondrial Extracellular Vesicles - Origins and Roles. Front Mol Neurosci, 14:767219.PMC857205334751216Nawaz M, Fatima F (2017). Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links. Front Mol Biosci, 4:50.PMC551392028770210Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, et al.. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 535:551-555.PMC496858927466127Berridge MV, Neuzil J (2017). The mobility of mitochondria: Intercellular trafficking in health and disease. Clin Exp Pharmacol Physiol, 44 Suppl 1:15-20.28409855Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, le Coz O, et al.. (2011). Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells, 29:812-824.PMC334671621433223Liu Z, Sun Y, Qi Z, Cao L, Ding S (2022). Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci, 12:66.PMC912160035590379Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature, 423:181-185.PMC480285812736687Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al.. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325:201-204.PMC281281119590001Rizza W, Veronese N, Fontana L (2014). What are the roles of calorie restriction and diet quality in promoting healthy longevity? Ageing Res Rev, 13:38-45.24291541Madreiter-Sokolowski CT, Sokolowski AA, Waldeck-Weiermair M, Malli R, Graier WF (2018). Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction. Genes (Basel), 9.PMC586788629547561Mehrabani S, Bagherniya M, Askari G, Read MI, Sahebkar A (2020). The effect of fasting or calorie restriction on mitophagy induction: a literature review. J Cachexia Sarcopenia Muscle, 11:1447-1458.PMC774961232856431Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, et al.. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 310:314-317.16224023Ji Z, Liu GH, Qu J (2022). Mitochondrial sirtuins, metabolism, and aging. J Genet Genomics, 49:287-298.34856390Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G (2019). Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab, 29:592-610.30840912Makela J, Tselykh TV, Kukkonen JP, Eriksson O, Korhonen LT, Lindholm D (2016). Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist is neuroprotective and stimulates PGC-1alpha expression and CREB phosphorylation in human dopaminergic neurons. Neuropharmacology, 102:266-275.26631533Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al.. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127:1109-1122.17112576Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, et al.. (2001). Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab, 281:E1340-1346.11701451Lambert AJ, Wang B, Yardley J, Edwards J, Merry BJ (2004). The effect of aging and caloric restriction on mitochondrial protein density and oxygen consumption. Exp Gerontol, 39:289-295.15036388Serna JDC, Caldeira da Silva CC, Kowaltowski AJ (2020). Functional changes induced by caloric restriction in cardiac and skeletal muscle mitochondria. J Bioenerg Biomembr, 52:269-277.32462240Gabbita SP, Butterfield DA, Hensley K, Shaw W, Carney JM (1997). Aging and caloric restriction affect mitochondrial respiration and lipid membrane status: an electron paramagnetic resonance investigation. Free Radic Biol Med, 23:191-201.9199881Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen HR 3rd, et al.. (2012). Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab, 16:777-788.PMC354407823217257Holloszy JO (1967). Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem, 242:2278-2282.4290225Holloszy JO, Booth FW (1976). Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol, 38:273-291.130825Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, et al.. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 586:151-160.PMC237555117991697Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB (2015). Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Med Sci Sports Exerc, 47:1922-1931.PMC447828325539479Jacobs RA, Lundby C (2013). Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol (1985), 114:344-350.23221957Baldwin KM, Klinkerfuss GH, Terjung RL, Mole PA, Holloszy JO (1972). Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise. Am J Physiol, 222:373-378.4333578Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA (2015). PGC-1alpha modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle, 5:9.PMC438145325834726Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, et al.. (2017). Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun, 8:548.PMC560146328916822Nicolson GL (2014). Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements. Integr Med (Encinitas), 13:35-43.PMC456644926770107Bogacka I, Xie H, Bray GA, Smith SR (2005). Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes, 54:1392-1399.15855325Coletta DK, Sriwijitkamol A, Wajcberg E, Tantiwong P, Li M, Prentki M, et al.. (2009). Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial. Diabetologia, 52:723-732.PMC489450219169664Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, et al.. (2012). The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab, 15:838-847.PMC361631322682224Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C, et al.. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab, 13:461-468.PMC308652021459330Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, et al.. (2013). Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell, 153:228-239.PMC389846823540700Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al.. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460:392-395.PMC278617519587680Shindyapina AV, Cho Y, Kaya A, Tyshkovskiy A, Castro JP, Deik A, et al.. (2022). Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna. Sci Adv, 8:eabo5482.PMC948112536112674Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al.. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444:337-342.PMC499020617086191Mehlman MJ, Binstock RH, Juengst ET, Ponsaran RS, Whitehouse PJ (2004). Anti-aging medicine: can consumers be better protected? Gerontologist, 44:304-310.15197284Liu JK (2022). Antiaging agents: safe interventions to slow aging and healthy life span extension. Nat Prod Bioprospect, 12:18.PMC908600535534591Miliotis S, Nicolalde B, Ortega M, Yepez J, Caicedo A (2019). Forms of extracellular mitochondria and their impact in health. Mitochondrion, 48:16-30.30771504McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S (2009). Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol, 296:H94-H105.PMC263778418978192Cowan DB, Yao R, Akurathi V, Snay ER, Thedsanamoorthy JK, Zurakowski D, et al.. (2016). Intracoronary Delivery of Mitochondria to the Ischemic Heart for Cardioprotection. PLoS One, 11:e0160889.PMC497693827500955Guariento A, Blitzer D, Doulamis I, Shin B, Moskowitzova K, Orfany A, et al.. (2020). Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg, 160:e15-e29.31564546Fu A, Shi X, Zhang H, Fu B (2017). Mitotherapy for Fatty Liver by Intravenous Administration of Exogenous Mitochondria in Male Mice. Front Pharmacol, 8:241.PMC542254128536524Moskowitzova K, Orfany A, Liu K, Ramirez-Barbieri G, Thedsanamoorthy JK, Yao R, et al.. (2020). Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol, 318:L78-L88.PMC698587731693391Hayashida K, Takegawa R, Endo Y, Yin T, Choudhary RC, Aoki T, et al.. (2023). Exogenous mitochondrial transplantation improves survival and neurological outcomes after resuscitation from cardiac arrest. BMC Med, 21:56.PMC1001884236922820Emani SM, Piekarski BL, Harrild D, Del Nido PJ, McCully JD (2017). Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg, 154:286-289.28283239Guariento A, Piekarski BL, Doulamis IP, Blitzer D, Ferraro AM, Harrild DM, et al.. (2021). Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J Thorac Cardiovasc Surg, 162:992-1001.33349443Yang X, Jiang J, Li Z, Liang J, Xiang Y (2021). Strategies for mitochondrial gene editing. Comput Struct Biotechnol J, 19:3319-3329.PMC820218734188780Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M, et al.. (2002). Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci, 9:534-541.12372991Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006). Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci U S A, 103:19689-19694.PMC175089217170133Yang Y, Wu H, Kang X, Liang Y, Lan T, Li T, et al.. (2018). Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell, 9:283-297.PMC582927529318513Gammage PA, Moraes CT, Minczuk M (2018). Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized. Trends Genet, 34:101-110.PMC578371229179920Han HA, Pang JKS, Soh BS (2020). Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med (Berl), 98:615-632.PMC722087332198625Nakano T, Nakamura Y, Park JH, Tanaka M, Hayakawa K (2022). Mitochondrial surface coating with artificial lipid membrane improves the transfer efficacy. Commun Biol, 5:745.PMC931436335879398Chang JC, Wu SL, Liu KH, Chen YH, Chuang CS, Cheng FC, et al.. (2016). Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl Res, 170:40-56 e43.26730494Wu S, Zhang A, Li S, Chatterjee S, Qi R, Segura-Ibarra V, et al.. (2018). Polymer Functionalization of Isolated Mitochondria for Cellular Transplantation and Metabolic Phenotype Alteration. Adv Sci (Weinh), 5:1700530.PMC586705529593955Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, et al.. (2018). Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 150:137-149.29040874Zhao Z, Yu Z, Hou Y, Zhang L, Fu A (2020). Improvement of cognitive and motor performance with mitotherapy in aged mice. Int J Biol Sci, 16:849-858.PMC701914332071554Javani G, Babri S, Farajdokht F, Ghaffari-Nasab A, Mohaddes G (2022). Mitochondrial transplantation improves anxiety- and depression-like behaviors in aged stress-exposed rats. Mech Ageing Dev, 202:111632.35065970Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007). Mitochondria as key components of the stress response. Trends Endocrinol Metab, 18:190-198.17500006Jassem W, Armeni T, Quiles JL, Bompadre S, Principato G, Battino M (2006). Protection of mitochondria during cold storage of liver and following transplantation: comparison of the two solutions, University of Wisconsin and Eurocollins. J Bioenerg Biomembr, 38:49-55.16721654McCully JD, Cowan DB, Emani SM, Del Nido PJ (2017). Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion, 34:127-134.28342934Lin L, Xu H, Bishawi M, Feng F, Samy K, Truskey G, et al.. (2019). Circulating mitochondria in organ donors promote allograft rejection. Am J Transplant, 19:1917-1929.PMC659107330761731Kaza AK, Wamala I, Friehs I, Kuebler JD, Rathod RH, Berra I, et al.. (2017). Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg, 153:934-943.27938904Masuzawa A, Black KM, Pacak CA, Ericsson M, Barnett RJ, Drumm C, et al.. (2013). Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol, 304:H966-982.PMC362589223355340Ramirez-Barbieri G, Moskowitzova K, Shin B, Blitzer D, Orfany A, Guariento A, et al.. (2019). Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion, 46:103-115.29588218Gomzikova MO, James V, Rizvanov AA (2021). Mitochondria Donation by Mesenchymal Stem Cells: Current Understanding and Mitochondria Transplantation Strategies. Front Cell Dev Biol, 9:653322.PMC805835333898449Stephens OR GD, Frimel M, Wanner N, Yin M, Willard B, Erzurum SC, Asosingh K. (2020). Characterization and origins of cell-free mitochondria in healthy murine and human blood. Mitochondrion, 54.PMC750880832781153Dimond R (2015). Social and ethical issues in mitochondrial donation. Br Med Bull, 115:173-182.PMC456237126351372Burgstaller JP, Johnston IG, Poulton J (2015). Mitochondrial DNA disease and developmental implications for reproductive strategies. Mol Hum Reprod, 21:11-22.PMC427504225425607Chinnery PF, Craven L, Mitalipov S, Stewart JB, Herbert M, Turnbull DM (2014). The challenges of mitochondrial replacement. PLoS Genet, 10:e1004315.PMC399888224762741Caicedo A, Aponte PM, Cabrera F, Hidalgo C, Khoury M (2017). Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications. Stem Cells Int, 2017:7610414.PMC551168128751917Shi X, Zhao M, Fu C, Fu A (2017). Intravenous administration of mitochondria for treating experimental Parkinson's disease. Mitochondrion, 34:91-100.28242362Nitzan K, Benhamron S, Valitsky M, Kesner EE, Lichtenstein M, Ben-Zvi A, et al.. (2019). Mitochondrial Transfer Ameliorates Cognitive Deficits, Neuronal Loss, and Gliosis in Alzheimer's Disease Mice. J Alzheimers Dis, 72:587-604.31640104Zhang Z, Ma Z, Yan C, Pu K, Wu M, Bai J, et al.. (2019). Muscle-derived autologous mitochondrial transplantation: A novel strategy for treating cerebral ischemic injury. Behav Brain Res, 356:322-331.30213662Gollihue JL, Patel SP, Mashburn C, Eldahan KC, Sullivan PG, Rabchevsky AG (2017). Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J Neurosci Methods, 287:1-12.PMC553351728554833Blitzer D, Guariento A, Doulamis IP, Shin B, Moskowitzova K, Barbieri GR, et al.. (2020). Delayed Transplantation of Autologous Mitochondria for Cardioprotection in a Porcine Model. Ann Thorac Surg, 109:711-719.31421103Lin HC, Lai IR (2013). Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats: reply. Shock, 39:543.23680775