A novel and convenient approach that combines high-throughput experimentation (HTE) with machine learning (ML) technologies to achieve the first selective cross-dimerization of sulfoxonium ylides via iridium catalysis is presented. A variety of valuable amide-, ketone-, ester-, and N-heterocycle-substituted unsymmetrical E-alkenes are synthesized in good yields with high stereoselectivities. This mild method avoids the use of diazo compounds and is characterized by simple operation, high step-economy, and excellent chemoselectivity and functional group compatibility. The combined experimental and computational studies identify an amide-sulfoxonium ylide as a carbene precursor. Furthermore, a comprehensive exploration of the reaction space is also performed (600 reactions) and a machine learning model for reaction yield prediction has been constructed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202313638DOI Listing

Publication Analysis

Top Keywords

high-throughput experimentation
8
cross-dimerization sulfoxonium
8
sulfoxonium ylides
8
machine learning
8
experimentation machine
4
machine learning-assisted
4
learning-assisted optimization
4
optimization iridium-catalyzed
4
iridium-catalyzed cross-dimerization
4
ylides novel
4

Similar Publications

Light, strong, and radiation-tolerant materials are essential for advanced nuclear systems and aerospace applications. However, the comprehensive properties of current radiation-tolerant materials are far from being satisfactory in harsh operating environments. In this study, a high-throughput-designed NbVTaSi refractory eutectic medium entropy alloy realizes the controllable formation of the β-NbSi phase with a high content and has outstanding comprehensive properties, i.

View Article and Find Full Text PDF

The proximity extension assay (PEA) enables large-scale proteomic investigations across numerous proteins and samples. However, discrepancies between measurements, known as batch-effects, potentially skew downstream statistical analyses and increase the risks of false discoveries. While implementing bridging controls (BCs) on each plate has been proposed to mitigate these effects, a clear method for utilizing this strategy remains elusive.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is a dangerous neurological disease associated with an imbalance in Th17/Treg cells and abnormal activation of the Wnt/β-catenin signaling pathway. This study aims to investigate whether inhibition of miR-155 can activate the Wnt/β-catenin signaling pathway to improve Th17/Treg imbalance and provide neuroprotective effects against stroke. We employed a multi-level experimental design.

View Article and Find Full Text PDF

The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.

View Article and Find Full Text PDF

Purpose: Malignant peripheral nerve sheath tumor (MPNST) is an aggressive soft tissue sarcoma that develops sporadically or in Neurofibromatosis type 1 patients. Its development is marked by the inactivation of specific tumor suppressor genes (TSGs): NF1, CDKN2A and SUZ12EED (Polycomb Repressor Complex 2). Each TSG loss can be targeted by particular drug inhibitors and we aimed to systematically combine these inhibitors, guided by TSG inactivation status, to test their precision medicine potential for MPNSTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!