Scientific understanding of the molecular structure and adsorption of polymers at oil-water liquid interfaces is very limited. In this study the adsorption free energy at the oil (CCl)-water interface was estimated using umbrella sampling molecular dynamics simulations for six carboxylate type vinyl polymers differing in hydrophobic nature and tacticity: and poly(acrylic acid) (-PAA, -PAA), and poly(methacrylic acid) (-PMA, -PMA), and and poly(ethylacrylic acid) (-PEA, -PEA). Δ values are in the order -PMA < -PEA < -PEA < -PAA < -PAA < -PMA. The results show the significant and complex influence of the chemical nature as well as tacticity of the polymer on its adsorption free energy as related to hydrogen bonding and orientation of bonds with respect to oil and water phases. The influence of tacticity is found to be the highest for PMA, which is interpreted to occur due to the balance between interactions among side groups and those occurring between side groups and solvent. Interactions between side-groups are crucial for determining the conformation of PAA (most hydrophilic) and the solvation of the side-group in water is crucial for determining the conformation of PEA (most hydrophobic). The adsorption of PMA represents the transition between these two dominating effects. The molecular contributions to the enthalpy of adsorption indicate that adsorption is favored mainly through two interactions: polymer-CCl and water-water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp02754f | DOI Listing |
Int J Biol Macromol
January 2025
National Engineering Research Center for Dyeing and Finishing of Textile, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, PR China. Electronic address:
Cationic polymers have been used in the cationization of cotton fabrics for salt-free dyeing, but commonly used polymers are limited by their high molecular weight and low adsorption efficiency, leading to high dosage or complex modification conditions. In this study, polyallylamine with low molecular weight was found to be an efficient cationic agent for cotton modification and the modified fabrics can be salt-free dyed with different kinds of reactive dyes after the optimization of the modification process. Furthermore, the modification bath was reused by replenishing a small amount of cationic agent and adjusting the pH to the original level.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China. Electronic address:
Despite the advancement of the Pt-catalyzed hydrogen evolution reaction (HER) through oxophilic metal-hydroxide surface hybridization, its stability in acidic solutions remains unsatisfactory. This is primarily due to excessive aggregation of active hydrogen, which hinders subsequent hydrogen desorption, coupled with the poor operational stability of metal hydroxides. In this study, we have designed Pt nanoparticles-modified NiFeCoCuCr high-entropy layered double hydroxides (Pt/HE-LDH) that exhibit exceptional catalytic activity toward HER in acidic electrolytes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
Single-atom catalysts (SACs) have attracted widespread attention due to their potential to replace platinum-based catalysts in achieving efficient oxygen reduction reaction (ORR), yet the rational optimization of SACs remains challenging due to their elusive reaction mechanisms. Herein, by employing ab initio molecular dynamics simulations and a thermodynamic integration method, we have constructed the potential-dependent free energetics of ORR on a single iron atom catalyst dispersed on nitrogen-doped graphene (Fe-N/C) and further integrated these parameters into a microkinetic model. We demonstrate that the rate-determining step (RDS) of the ORR on SACs is potential-dependent rather than invariant within the operative potential range.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) to generate high-value chemicals under mild conditions acts as an energy-saving and sustainable strategy. However, it is still challenging to develop electrocatalysts with high efficiency and good durability. Here, nickel foam (NF) supported CoCrCe(7.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!