Greenhouse investigation on the phytoremediation potential of pioneer tree Mill. in abandoned mine site.

Int J Phytoremediation

Centre for the Conservation of Biodiversity (CCB), Sardinian Germplasm Bank (BG-SAR), Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.

Published: March 2024

Tailings and mine dumps are often pollutant sources that pose serious environmental threats to surrounding areas. The use of pioneer vascular plants to extract or stabilize metals is considered among the more effective mine tailing reclamation techniques. The study aimed at evaluating the phytoremediation potential of in abandoned mine-tailing (SW-Sardinia, Italy). Plant ability to tolerate high Zn, Pb, and Cd concentration and their accumulation in roots and aerial parts were assessed at greenhouse conditions. Experiments were performed on 45 seedlings planted in different substrates (mine-tailings, mine-tailings compost-amended, and reference) and on 15 seedlings grown spontaneously in the contaminated mine site investigated with their own substrates. The phytostabilization potential of plant was evaluated through biological accumulation and translocation indexes together with plant survival and biometric parameters. The outcomes showed the adaptability of to grow and survive in contaminated substrates. Compost addition did not improve plant survival and growth, however, it enhanced total carbon and nitrogen contents of soil, restricted metal bioavailability, and accumulation in plant aerial parts. These findings highlight that may be considered for phytostabilization given the great potential to limit Zn, Pb, and Cd toxicity in plant tissues by applying compost amendment in metal contaminated mine sites.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2023.2267128DOI Listing

Publication Analysis

Top Keywords

phytoremediation potential
8
mine site
8
aerial parts
8
contaminated mine
8
plant survival
8
plant
6
mine
5
greenhouse investigation
4
investigation phytoremediation
4
potential
4

Similar Publications

Unlocking Biochar's Potential: Innovative Strategies for Sustainable Remediation of Heavy Metal Stress in Tobacco Plants.

Scientifica (Cairo)

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.

View Article and Find Full Text PDF

sp. strain p52, an aerobic dioxin degrader, was capable of utilizing petroleum hydrocarbons as the sole sources of carbon and energy for growth. In the present study, the degradation of the mixture of aliphatic hydrocarbons (hexadecane and tetradecane) and aromatic hydrocarbons (phenanthrene and anthracene) by strain p52 was examined.

View Article and Find Full Text PDF

A screening method for polyester films-degrading microorganisms and enzymes.

J Hazard Mater

January 2025

Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.

Enzymatic degradation of plastic pollution offers a promising environmentally friendly waste management strategy, however, suitable biocatalysts must be screened and developed. Traditional screening methods using soluble or solubilised polymers do not necessarily identify enzymes that are effective against solid or crystalline polymers. This study presents a simple, time-saving and cost-effective method for identifying microorganisms and enzymes capable of degrading polymeric films.

View Article and Find Full Text PDF

Specific Enrichment of Carrying Microorganisms with Nitrogen Fixation and Dissimilatory Nitrate Reduction Function Enhances Arsenic Methylation in Plant Rhizosphere Soil.

Environ Sci Technol

January 2025

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China.

Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of , a potential As hyperaccumulator. was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!