Biodegradation of agave Comiteco bagasse by spp.: a source of cellulases useful in hydrolytic treatment to produce reducing sugars.

3 Biotech

Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Álvaro Obregón s/n, Nueva, 21100 Mexicali, BC Mexico.

Published: November 2023

This study aimed to determine the production parameters of five strains of spp. during their cultivation on agave bagasse, as well as the feasibility of using cellulolytic extracts to produce reducing sugars in the same bagasse. After cultivation, the basidiome production parameters varied between 41.2 and 65.7% (biological efficiency), 0.17 and 0.30 (yield), 0.60 and 0.90% (production rate), 16.4 and 41.1% (Bioconversion) and 9.4 and 21.3 g (mean mushroom weight). At day 15 of growth, showed the highest β-glucosidase activity (43.95 ± 4.5 IU/g); on day 33. The same strain had the highest endoglucanase activity (21.12 ± 0.5 IU/ml). Both extracts were partially purified, and the kinetic parameters and K were estimated (20.83 µmole/ml sec and 232.01 µmole/ml for β-glucosidase and 685.01 µmole/ml sec and 1,240.34 µmole/ml for endoglucanase). In the enzymatic hydrolysis assay, the highest concentration of reducing sugars (43.13 ± 1.09 g/L; 0.21 g/g bagasse) was obtained by a mixture of the two partially purified extracts acting synergistically after 48 h and with a pH adjustment. The results suggest that the use of agave bagasse for cultivating edible mushrooms while obtaining cellulolytic extracts is an alternative treatment for waste reduction and valorization of agro-industrial by-products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560175PMC
http://dx.doi.org/10.1007/s13205-023-03783-wDOI Listing

Publication Analysis

Top Keywords

reducing sugars
12
produce reducing
8
production parameters
8
agave bagasse
8
cellulolytic extracts
8
partially purified
8
bagasse
5
biodegradation agave
4
agave comiteco
4
comiteco bagasse
4

Similar Publications

AmelOBP4: an antenna-specific odor-binding protein gene required for olfactory behavior in the honey bee (Apis mellifera).

Front Zool

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.

Background: Odorant binding proteins (OBPs) initiate the process of odorant perception. Numerous investigations have demonstrated that OBPs bind a broad variety of chemicals and are more likely to carry pheromones or odor molecules with high binding affinities. However, few studies have investigated its effects on insect behavior.

View Article and Find Full Text PDF

Efforts to reduce sugar-sweetened beverages and combat childhood obesity.

Am J Clin Nutr

January 2025

Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada; Global Health Graduate Program, McMaster University, Hamilton, ON, Canada; Population Health Research Institute, Hamilton, ON, Canada.

View Article and Find Full Text PDF

In human eye, structural proteins, known as crystallins, play a crucial role in maintaining the eye's refractive index. These crystallins constitute majority of the total soluble proteins found in the eye lens. Among them, α-crystallins (α-CR) is one of the major components.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a multifaceted inflammatory skin condition characterized by the involvement of various cell types, such as keratinocytes, macrophages, neutrophils, and mast cells. Research indicates that flavonoids possess anti-inflammatory properties that may be beneficial in the management of AD. However, the investigation of the glycoside forms for anti-AD therapy is limited.

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!