Background: Pancreatitis is known to be an important risk factor for pancreatic ductal adenocarcinoma (PDAC). However, the exact molecular mechanisms of how inflammation promotes PDAC are still not fully understood. Regnase-1, an endoribonuclease, regulates immune responses by degrading mRNAs of inflammation-related genes. Herein, we investigated the role of Regnase-1 in PDAC.
Methods: Clinical significance of intratumor Regnase-1 expression was evaluated by immunohistochemistry in 39 surgically-resected PDAC patients. The functional role of Regnase-1 was investigated by pancreas-specific Regnase-1 knockout mice and Kras-mutant Regnase-1 knockout mice. The mechanistic studies with gene silencing, RNA immunoprecipitation sequencing (RIP-seq) and immune cell reconstitution were performed in human/mouse PDAC cell lines and a syngeneic orthotopic tumor transplantation model of KrasG12D-mutant and Trp53-deficient PDAC cells.
Results: Regnase-1 expression was negatively correlated with the clinical outcomes and an independent predictor of poor relapse-free and overall survival in PDAC patients. Pancreas-specific Regnase-1 deletion in mice promoteed pancreatic cancer with PMN-MDSC infiltration and shortened their survival. A syngeneic orthotopic PDAC model exhibited that Regnase-1 downregulation accelerated tumor progression via recruitment of intratumor CD11b MDSCs. Mechanistically, Regnase-1 directly negatively regulated a variety of chemokines/cytokines important for MDSC recruitment and activation, including CXCL1, CXCL2, CSF2, and TGFβ, in pancreatic cancer cells. We subsequently showed that IL-1β-mediated Regnase-1 downregulation recruited MDSCs to tumor sites and promoted pancreatic cancer progression via mitigation of cytotoxic T lympohocytes-mediated antitumor immunity.
Conclusions: IL-1b-mediated Regnase-1 downregulation induces MDSCs and promotes pancreatic cancer through the evasion of anticancer immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561497 | PMC |
http://dx.doi.org/10.1186/s13046-023-02831-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!