By implementation of the iPOND technique for plant material, changes in posttranslational modifications of histones were identified in hydroxyurea-treated root meristem cells of Vicia. Replication stress (RS) disrupts or inhibits replication forks and by altering epigenetic information of the newly formed chromatin can affect gene regulation and/or spatial organisation of DNA. Experiments on Vicia faba root meristem cells exposed to short-term treatment with 3 mM hydroxyurea (HU, an inhibitor of DNA replication) were aimed to understand epigenetic changes related to RS. To achieve this, the following histone modifications were studied using isolation of proteins on nascent DNA (iPOND) technique (for the first time on plant material) combined with immunofluorescence labeling: (i) acetylation of histone H3 at lysine 56 (H3K56Ac), (ii) acetylation of histone H4 at Lys 5 (H4K5Ac), and (iii) phosphorylation of histone H3 at threonine 45 (H3T45Ph). Certainly, the implementation of the iPOND method for plants may prove to be a key step for a more in-depth understanding of the cell's response to RS at the chromatin level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562345 | PMC |
http://dx.doi.org/10.1007/s00425-023-04249-2 | DOI Listing |
Plant Cell
December 2024
School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
Plant Mol Biol
December 2024
Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
We previously reported that in Arabidopsis, the phytochelatin-mediated metal-detoxification machinery is also essential for organomercurial phenylmercury (PheHg) tolerance. PheHg treatment causes severe root growth inhibition in cad1-3, an Arabidopsis phytochelatin-deficient mutant, frequently accompanied by abnormal root tip swelling. Here, we examine morphological and physiological characteristics of PheHg-induced abnormal root tip swelling in comparison to Hg(II) stress and demonstrate that auxin homeostasis disorder in the root is associated with the PheHg-induced root tip swelling.
View Article and Find Full Text PDFAnn Bot
December 2024
Laboratório de Anatomia Vegetal (LAVeg), Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
Background And Aims: Recent studies have documented numerous morphoanatomical variations for the seed coat in Bromeliaceae. However, the structural diversity and character evolution of the embryo within this family remain largely unexplored. Given the embryo's significance in plant diversification, this research aims to investigate the morphology and key anatomical features of Bromeliaceae embryos, providing insights into character evolution, taxonomic applications, and reproductive biology.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
The orientation of cell divisions is crucial for normal development of all plant organs throughout their lifecycle. Despite the importance of understanding the intricate molecular mechanisms guiding this process, relatively few pathways have been characterized to date. Here we want to outline what is known about the molecular regulation guiding changes in division orientation in the root apical meristem of the model plant Arabidopsis thaliana, from the upstream transcriptional modules to the downstream executors that lead to division plane establishment.
View Article and Find Full Text PDFPlant J
December 2024
Department of Biology, University of Iowa, Iowa City, Iowa, 52242, USA.
CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are 12-13 amino acid-long peptides that serve as positional signals in plants. The core CLE signaling module consists of a CLE peptide and a leucine-rich repeat receptor-like kinase, but in flowering plants, WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors are also incorporated to form negative feedback loops that regulate stem cell maintenance in the shoot and root. It is not known when WOX genes were co-opted into CLE signaling pathways, only that mosses and liverworts do not require WOX for CLE-regulated stem cell activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!