To evaluate the association of intracranial non-stenotic atherosclerotic plaque with cerebral small vessel disease (CSVD) imaging markers in a CSVD population using 3.0 T high-resolution magnetic resonance imaging (HRMRI), which was validated in embolic stroke of undetermined source (ESUS) cohort. We retrospectively recruited consecutive patients who were diagnosed with CSVD or ESUS from January 2015 to December 2019. All patients underwent intracranial HRMRI to assess intracranial non-stenotic atherosclerotic plaques. Baseline and imaging data were collected and were measured among all patients. Among 153 patients with CSVD, there were 59 with intracranial atherosclerotic plaque (IAP) and 94 with non-IAP, including 36 with intracranial atherosclerotic complicated plaque (IACP). Among 227 ESUS patients, there were 155 with IAP and 72 with non-IAP, including 127 with IACP. In the CSVD population, we found that: (1) CSVD burden was associated with IAP (p = 0.036) and IACP (p = 0.008); (2) IAP was associated with white matter hyperintensity (51% vs. 34%; P = 0.039), and IACP was associated with lacunes (69% vs. 35%; P = 0.009) and enlarge perivascular space (69% vs. 39%; P = 0.022). A similar association of CSVD imaging markers with IAP or IACP was found in the ESUS population. Furthermore, the association of unilateral IAP or IACP with CSVD imaging markers of ipsilateral hemisphere was identified in the two cohorts. This is the first report that intracranial non-stenotic atherosclerotic plaque, especially complicated plaque, is closely associated with CSVD imaging markers, which provide further evidence for the association of large artery atherosclerosis with CSVD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562462 | PMC |
http://dx.doi.org/10.1038/s41598-023-44240-1 | DOI Listing |
Sensors (Basel)
December 2024
CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Dental Medicine Faculty, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania.
The use of Raman spectroscopy, particularly surface-enhanced Raman spectroscopy (SERS), offers a powerful tool for analyzing biochemical changes in biofluids. This study aims to assess the modifications occurring in saliva collected from patients before and after exposure to cone beam computed tomography (CBCT) and computed tomography (CT) imaging. SERS analysis revealed significantly amplified spectra in post-imaging samples compared to pre-imaging samples, with pronounced intensification of thiocyanate and opiorphin bands, which, together with proteins, dominated the spectra.
View Article and Find Full Text PDFSensors (Basel)
December 2024
IDEKO Research Center, Basque Research and Technology Alliance (BRTA), 20870 Elgoibar, Spain.
Traditional marker-based photogrammetry systems often require the attachment and removal of a sticker for each measured point, involving labor-intensive manual steps. This paper presents an innovative approach that utilizes raised, cross-shaped markers, referred to as 'molded markers', directly embedded into composite pieces. In this study, these markers, commonly employed in other industrial processes, serve as fiducial markers for accurate photogrammetry.
View Article and Find Full Text PDFNutrients
December 2024
Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan.
Background/objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is diagnosed when hepatic steatosis is proven by imaging and one of the five cardiometabolic criteria is present. The relationship between MASLD and body composition components has recently received increased research attention. However, the five cardiometabolic criteria do not include components of body composition.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
Triple-negative breast cancer (TNBC) represents an aggressive form of breast cancer with few available therapeutic options. Chemotherapy, particularly with drugs like doxorubicin (DOX), remains the cornerstone of treatment for this challenging subtype. However, the clinical utility of DOX is hampered by adverse effects that escalate with higher doses and drug resistance, underscoring the need for alternative therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!