A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rapid adsorption of benzotriazole onto oxidized carbon cloth as an easily separable adsorbent. | LitMetric

Rapid adsorption of benzotriazole onto oxidized carbon cloth as an easily separable adsorbent.

Sci Rep

Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt.

Published: October 2023

A commercial carbon cloth (CC) was oxidized by HNO acid and the features of the plain and oxidized CC were evaluated. The results of characterization illustrated that HNO oxidization duplicated the oxygen-containing functional groups and the surface area of the CC. The adsorption performance of the plain and oxidized CC (Oxi-CC) toward benzotriazole (BTR) was compared. The results disclosed that the uptake of BTR by oxidized CC was greater than the plain CC. Thence, the affinity of oxidized CC toward BTR was assessed at different conditions. It was found that the adsorption was quick, occurred at pH 9 and improved by adding NaCl or CaCl to the BTR solution. The kinetic and isotherm studies revealed that the surface of Oxi-CC is heterogeneous and the adsorption of BTR follows a physical process and forms multilayer over the Oxi-CC surface. The regenerability and reusability study illustrated that only deionized water can completely regenerate the Oxi-CC and that the Oxi-CC can be reused for five cycles without any loss of performance. The high maximum adsorption capacity of Dubinin-Radushkevich isotherm model (252 mg/g), ease of separation and regeneration, and maintaining the adsorption capacity for several cycles revealed the high efficiency and economical and environmental feasibility of Oxi-CC as an adsorbent for BTR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562377PMC
http://dx.doi.org/10.1038/s41598-023-44067-wDOI Listing

Publication Analysis

Top Keywords

carbon cloth
8
plain oxidized
8
adsorption capacity
8
oxidized
6
oxi-cc
6
btr
6
adsorption
5
rapid adsorption
4
adsorption benzotriazole
4
benzotriazole oxidized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!