Starving out brain tumors: a reprogrammed lysine catabolism serves as a novel target for glioblastoma treatment.

Signal Transduct Target Ther

Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.

Published: October 2023

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562387PMC
http://dx.doi.org/10.1038/s41392-023-01616-zDOI Listing

Publication Analysis

Top Keywords

starving brain
4
brain tumors
4
tumors reprogrammed
4
reprogrammed lysine
4
lysine catabolism
4
catabolism serves
4
serves novel
4
novel target
4
target glioblastoma
4
glioblastoma treatment
4

Similar Publications

The ER protein CANX (calnexin)-mediated autophagy protects against alzheimer disease.

Autophagy

January 2025

Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.

Although the relationship between macroautophagy/autophagy and Alzheimer disease (AD) is widely studied, the underlying mechanisms are poorly understood, especially the regulatory role of the initiation signaling of autophagy on AD. Here, we find that the ER transmembrane protein CANX (calnexin) is a novel interaction partner of the autophagy-inducing kinase ULK1 and is required for ULK1 recruitment to the ER under basal or starved conditions. Loss of CANX results in the inactivity of ULK1 kinase and inhibits autophagy flux.

View Article and Find Full Text PDF

RNAi of Neuropeptide CCHamide-1 and Its Receptor Indicates Role in Feeding Behavior in the Pea Aphid, .

Insects

November 2024

Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China.

Neuropeptide (abbreviated as ) is a recently discovered peptide that is present in many arthropods and is the ligand of the , a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes such as feeding, circadian rhythm, insulin production, lipid metabolism, growth, and reproduction. However, the function of this gene in aphids is still unknown. Here, we characterized and determined the potential role of / signaling in the pea aphid, , which is a notorious pest in agriculture.

View Article and Find Full Text PDF

The appetite of honeybees for food is crucial to their survival and reproduction, as they sustain their entire colony by collecting pollen and nectar for nutrients. Dopamine, an important neurotransmitter, regulates appetite and satiety. However, how dopamine regulates honeybee foraging behavior remains unexplored.

View Article and Find Full Text PDF

Nuclear ESCRT is involved in intranuclear protein quality control by micronucleophagy.

Biochem Biophys Res Commun

January 2025

Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. Electronic address:

Intranuclear protein quality control (PQC) is critical for protein homeostasis (or proteostasis) in non-dividing cells including brain nerve cells, but its molecular mechanism remains unresolved. In nutrient-starved conditions, elimination of nucleolar proteins is critical for cell viability in budding yeast, providing a model system to study the mechanisms involved in intranuclear PQC. The nuclear-specific endosomal sorting complex required for transport (ESCRT) CHMP7/Chm7 is linked to neurodegenerative diseases, but its known role is limited.

View Article and Find Full Text PDF

Fast autofluorescence imaging to evaluate dynamic changes in cell metabolism.

J Biomed Opt

December 2024

Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States.

Significance: Cellular metabolic dynamics can occur within milliseconds, yet there are no optimal tools to spatially and temporally capture these events. Autofluorescence imaging can provide metabolic information on the cellular level due to the intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD).

Aim: Our goal is to build and evaluate a widefield microscope optimized for rapid autofluorescence imaging of metabolic changes in cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!