Activating anionic redox chemistry in layered oxide cathodes is a paradigmatic approach to devise high-energy sodium-ion batteries. Unfortunately, excessive oxygen redox usually induces irreversible lattice oxygen loss and cation migration, resulting in rapid capacity and voltage fading and sluggish reaction kinetics. Herein, the reductive coupling mechanism (RCM) of uncommon electron transfer from oxygen to copper ions is unraveled in a novel P2-NaCuLiMnO cathode for boosting the reversibility and kinetics of anionic redox reactions. The resultant strong covalent Cu-(O-O) bonding can efficaciously suppress excessive oxygen oxidation and irreversible cation migration. Consequently, the P2-NaCuLiMnO cathode delivers a marvelous rate capability (134.1 and 63.2 mAh g at 0.1C and 100C, respectively) and outstanding long-term cycling stability (82% capacity retention after 500 cycles at 10C). The intrinsic functioning mechanisms of RCM are fully understood through systematic in situ/ex situ characterizations and theoretical computations. This study opens a new avenue toward enhancing the stability and dynamics of oxygen redox chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c08070 | DOI Listing |
Molecules
December 2024
Grupo de Investigación Agua y Salud Ambiental, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM's feasibility for photocatalytic processes.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Forestry, Gansu Agricultural University, Lanzhou 730070, China.
Wolfberry () is a vital economic tree species in northwest China, but root rot caused by occurs frequently, which seriously endangers the quality and yield of wolfberry. In this study, potato glycoside alkaloids (PGAs), a plant-derived active substance, were used as materials to explore its inhibitory effect on . By analyzing the changes of reactive oxygen species (ROS) level, antioxidant capacity, and apoptosis, the role of PGAs-mediated oxidative stress in inducing apoptosis of was revealed.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute for Sustainability, Energy and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Critical source areas (CSAs) can act as a source of phosphorus (P) during intermittent rainfall events and contribute to dissolved P loss via runoff. Dissolved forms of P are readily accessible for plant and algal uptake; hence it is a concern in terms of the eutrophication of freshwater bodies. The potential of CSAs to release dissolved P to surface runoff upon intermittent short-term submergence caused by different rainfall events has not been studied at a field-scale in New Zealand previously.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).
View Article and Find Full Text PDFSynapse
January 2025
Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico.
Brain aging is a multifactorial process that includes a reduction in the biological and metabolic activity of individuals. Oxidative stress and inflammatory processes are characteristic of brain aging. Given the current problems, the need arises to implement new therapeutic approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!